Ионизирующее излучение: виды и действие на организм человека. Вредные производственные факторы - ионизирующее излучение

Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.
Из-за того, что разные типы ионизирующего излучения обладают разной ЛПЭ, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятия относительной биологической эффективности (коэффициента качества) излучения по отношению к излучению с низкой ЛПЭ (коэффициент качества фотонного и электронного излучения принимают за единицу) и эквивалентной дозы ионизирующего излучения, численно равной произведению поглощённой дозы на коэффициент качества.
После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1-2 Зв на всё тело. В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации)

Различают два вида эффекта воздействия на организм ионизирующих излучений:
Соматический (При соматическом эффекте последствия проявляются непосредственно у облучаемого)

Генетический (При генетическом эффекте последствия проявляются непосредственно у его потомства)

Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

При изучении действия излучения на организм были выявлены следующие особенности:
Высокая эффективность поглощённой энергии, даже малые её количества могут вызвать глубокие биологические изменения в организме.
Наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений.
Действие от малых доз может суммироваться или накапливаться.
Генетический эффект - воздействие на потомство.
Различные органы живого организма имеют свою чувствительность к облучению.
Не каждый организм (человек) в целом одинаково реагирует на облучение.
Облучение зависит от частоты воздействия. При одной и той же дозе облучения вредные последствия будут тем меньше, чем более дробно оно получено во времени.


Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь ИИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.

Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.
Местные поражения характеризуются лучевыми ожогами кожи и слизистых оболочек. При сильных ожогах образуются отёки, пузыри, возможно отмирание тканей (некрозы).
Смертельные поглощённые дозы для отдельных частей тела следующие:
o голова - 20 Гр;
o нижняя часть живота - 50 Гр;
o грудная клетка -100 Гр;
o конечности - 200 Гр.
При облучении дозами, в 100-1000 раз превышающую смертельную дозу, человек может погибнуть во время облучения ("смерть под лучом").
Биологические нарушения в зависимости от суммарной поглощённой дозы излучения представлены в табл. №1 «Биологические нарушения при однократном (до 4-х суток) облучении всего тела человека»

Доза облучения, (Гр) Степень лучевой болезни Начало проявле-
ния первичной реакции Характер первичной реакции Последствия облучения
До 0,250,25 - 0,50,5 - 1,0 Видимых нарушений нет.
Возможны изменения в крови.
Изменения в крови, трудоспособность нарушена
1 - 2 Лёгкая (1) Через 2-3 ч Несильная тошнота с рвотой. Проходит в день облучения Как правило, 100% -ное выздоров-
ление даже при отсутствии лечения
2 - 4 Средняя (2) Через 1-2 ч
Длится 1 сутки Рвота, слабость, недомогание Выздоровление у 100% пострадавших при условии лечения
4 - 6 Тяжёлая (3) Через 20-40 мин. Многократная рвота, сильное недомогание, температура -до 38 Выздоровление у 50-80% пострадавших при условии спец. лечения
Более 6 Крайне тяжёлая (4) Через 20-30 мин. Эритема кожи и слизистых, жидкий стул, температура -выше 38 Выздоровление у 30-50% пострадавших при условии спец. лечения
6-10 Переходная форма (исход непредсказуем)
Более 10 Встречается крайне редко (100%-ный смертельный исход)
Табл. №1
В России, на основе рекомендаций Международной комиссии по радиационной защите, применяется метод защиты населения нормированием. Разработанные нормы радиационной безопасности учитывают три категории облучаемых лиц:
А - персонал, т.е. лица, постоянно или временно работающие с источниками ионизирующего излучения
Б - ограниченная часть населения, т.е. лица, непосредственно не занятые на работе с источниками ионизирующих излучений, но по условиям проживания или размещения рабочих мест могущие подвергаться воздействию ионизирующих излучений;
В - всё население.
Для категорий А и Б, с учётом радиочувствительности разных тканей и органов человека, разработаны предельно допустимые дозы облучения, показанные в табл. №2«Предельно допустимые дозы облучения»

Дозовые пределы
Группа и название критических органов человека Предельно допустимая доза для категории А за год,
бэр Предел дозы для категории Б за год,
бэр
I. Всё тело, красный костный мозг 5 0,5
II. Мышцы, щитовидная железа, печень, жировая ткань, лёгкие, селезёнка, хрусталик глаза, желудочно-кишечный тракт 15 1,5
III. Кожный покров, кисти, костная ткань, предплечья, стопы, лодыжки 30 3,0

56. Годовые предельны доз внешнего облучения.

«Нормами радиационной безопасности НРБ-69» установлены предельно допустимые дозы внешнего и внутреннего облучения и так называемые пределы дозы.
Предельно допустимая доза (ПДД) - годовой уровень облучения персонала, не вызывающий при равномерном накоплении дозы в течение 50 лет обнаруживаемых современными методами неблагоприятных изменений в состоянии здоровья самого облучаемого и его потомства. Предел дозы - допустимый среднегодовой уровень облучения отдельных лиц из населения, контролируемый по усредненным дозам внешнего излучения, радиоактивным выбросам и радиоактивной загрязненности внешней среды.
Установлены три категории облучаемых лиц: категория А-персонал (лица, которые непосредственно работают с источниками ионизирующих излучений или по роду своей работы могут подвергаться облучению), категория Б - отдельные лица из населения (контингент населения, проживающего на территории наблюдаемой зоны), категория Б - население в целом (при оценке генетически значимой дозы облучения). Среди персонала выделены две группы: а) лица, условия труда которых таковы, что дозы облучения могут превышать 0,3 годовых ПДД (работа в контролируемой зоне); б) лица, условия труда которых таковы, что дозы облучения не должны превышать 0,3 годовых ПДД (работа вне контролируемой зоны).
При установлении ПДД в пределах дозы внешнего и внутреннего облучения в НРБ-69 учитываются четыре группы критических органов. Критическим органом считается тот, облучение которого является наибольшим; степень опасности облучения зависит также от радиочувствительности облучаемых тканей и органов.
В зависимости от категории облучаемых лиц и группы критических органов установлены следующие предельно допустимые дозы и пределы доз (табл. 22).

Предельно допустимые дозы не включают естественный радиационный фон, создаваемый космическим излучением и излучениями горных пород при отсутствии посторонних искусственных источников ионизирующей радиации.
Мощность дозы, которая создается естественным фоном, на поверхности земли колеблется в пределах 0,003-0,025 мр/час (иногда и выше). При расчетах естественный фон принимается равным 0,01 мр/час.
Предельная суммарная доза для профессионального облучения рассчитывается по формуле:
Д≤5(N-18),
где Д - суммарная доза в бэр; N - возраст человека в годах; 18 - возраст в годах начала профессионального облучения. К 30 годам суммарная доза не должна быть больше 60 бэр.
В исключительных случаях разрешается облучение, приводящее к превышению годовой предельно допустимой дозы в 2 раза в каждом конкретном случае или в 5 раз на протяжении всего периода работы. В случае аварии каждое внешнее облучение дозой 10 бэр должно быть так скомпенсировано, чтобы в последующем периоде, не превышающем 5 лет, накопленная доза не превысила величину, определяемую по указанной выше формуле. Каждое внешнее облучение дозой до 25 бэр должно быть так скомпенсировано, чтобы в последующем периоде, не превышающем 10 лет, накопленная доза не превысила величину, определенную по той же формуле.

57. Предельно-допустимые содержание и поступления радиоактивных веществ при внутреннем облучении.

58. Допустимые концентрации радионуклидов в воздухе допустимая загрязненность поврехностей рабочей зоны.

http://vmedaonline.narod.ru/Chapt14/C14_412.html

59. Работа в условиях планируемого повышенного облучения.

Планируемое повышенное облучение

3.2.1. Планируемое повышенное облучение персонала группы А выше установленных пределов доз (см. табл. 3.1.) при предотвращении развития аварии или ликвидации ее последствий может быть разрешено только в случае необходимости спасения людей и (или) предотвращения их облучения. Планируемое повышенное облучение допускается для мужчин, как правило, старше 30 лет лишь при их добровольном письменном согласии, после информирования о возможных дозах облучения и риске для здоровья.

3.2.2.. Планируемое повышенное облучение в эффективной дозе до 100 мЗв в год и эквивалентных дозах не более двукратных значений, приведенных в табл. 3.1, допускается организациями (структурными подразделениями) федеральных органов исполнительной власти, осуществляющих государственный санитарно-эпидемиологический надзор на уровне субъекта Российской Федерации, а облучение в эффективной дозе до 200 мЗв в год и четырехкратных значений эквивалентных доз по табл. 3.1 – допускается только федеральными органами исполнительной власти, уполномоченными осуществлять государственный санитарно-эпидемиологический надзор.

Повышенное облучение не допускается:

Для работников, ранее уже облученных в течение года в результате аварии или запланированного повышенного облучения с эффективной дозой 200 мЗв или с эквивалентной дозой, превышающей в четыре раза соответствующие пределы доз, приведенные в табл. 3.1;

Для лиц, имеющих медицинские противопоказания для работы с источниками излучения.

3.2.3. Лица, подвергшиеся облучению в эффективной дозе, превышающей 100 мЗв в течение года, при дальнейшей работе не должны подвергаться облучению в дозе свыше 20 мЗв за год.

Облучение эффективной дозой свыше 200 мЗв в течение года должно рассматриваться как потенциально опасное. Лица, подвергшиеся такому облучению, должны немедленно выводиться из зоны облучения и направляться на медицинское обследование. Последующая работа с источниками излучения этим лицам может быть разрешена только в индивидуальном порядке с учетом их согласия по решению компетентной медицинской комиссии.

3.2.4. Лица, не относящиеся к персоналу, привлекаемые для проведения аварийных и спасательных работ, должны быть оформлены и допущены к работам как персонал группы А.

60. Компенсация доз аварийного переоблучения.

В ряде случаев возникает необходимость проведения работ в условиях повышенной радиационной опасности (работы по ликвидации аварий, спасению людей и др.), причем заведомо невозможно принять меры, исключающие облучение.

Работы в этих условиях (планируемое повышенное облучение) могут производиться по специальному разрешению.

При планируемом повышенном облучении разрешается максимальное превышение годовой предельно допустимой дозы - ПДД (или годового предельно-допустимого поступления - ПДП) в 2 раза в каждом отдельном случае и в 5 раз на протяжении всего периода работ.

К работам в условиях планируемого повышенного облучения даже при наличии согласия работника нельзя допускать в случаях:

а) если добавление планируемой дозы к накопленной работником превышает величину Н = ПДД*Т;

б) если работник при аварии или случайном облучении ранее получал дозу, превышающую годовую в 5 раз;

в) если работник - женщина в возрасте до 40 лет.

Лица, получившие аварийное облучение, при отсутствии медицинских противопоказаний могут продолжать работу. Условия последующей работы для этих лиц должны учитывать дозу переоблучения. Годовая предельно допустимая доза для лиц, получивших аварийное облучение, должна быть пониженной на величину, компенсирующую переоблучение. Аварийное облучение дозой до 2 ПДД компенсируется в последующем периоде работы (но не более, чем в 5 лет) с таким расчетом, чтобы за это время была приведена в соответствие доза:

Н с н = ПДД*Т.

Аварийное внешнее облучение дозой до 5 ПДД аналогично компенсируется в период не более, чем в 10 лет.

Таким образом, с учетом компенсации годовая предельно допустимая доза для работника, получившего аварийное облучение, не должна превышать:

ПДД к = ПДД - Н/n = ПДД - (Н с н - ПДД*Т)/n,

где ПДД к - предельно допустимая доза с учетом компенсации, Зв/год бэр/год); Н с н - накопленная доза за время работы Т с учетом аварийной дозы, Зв (бэр);

Н-превышение накопленной дозы над допустимым значением ПДД*Т, Зв (бэр); n - время компенсации, лет.

Облучение персонал дозой 5 ПДД и выше расценивается как потенциально опасное. Лица, получившие такие дозы, обязательно проходят медицинское обследование и к дальнейшей работе с источниками ионизирующих излучений допускаются при отсутствии медицинских противопоказаний.

61. Общие принципы защиты от воздействия ионизирующих излучений.

Защита от ионизирующих излучений достигается в основном методами защиты расстоянием, экранирования и ограничения поступления радионуклидов в окружающую среду, проведением комплекса организационно-технических и лечебно-профилактических мероприятий.

Наиболее простые способы уменьшения вреда от воздействия радиации состоят либо в уменьшении времени облучения, либо в уменьшении мощности источника, либо же в удалении от него на расстояние R, обеспечивающее безопасный уровень облучения (до предела или ниже эффективной дозы). Интенсивность излучения в воздухе при удалении от источника даже без учета поглощения уменьшается по закону 1/R 2 .

Основными мероприятиями по защите населения от ионизирующих излучений является всемерное ограничение поступления в окружающую атмосферу, воду, почву отходов производства, содержащих радионуклиды, а также зонирование территорий вне промышленного предприятия. В случае необходимости создают санитарно-защитную зону и зону наблюдения.

Санитарно-защитная зона - территория вокруг источника ионизирующего излучения, на которой уровень облучения людей в условиях нормальной эксплуатации данного источника может превысить установленный предел дозы облучения населения.

Зона наблюдения - территория за пределами санитарно-защитной зоны, на которой возможное влияние радиоактивных выбросов учреждения и облучение проживающего населения может достигать установленного ПД и на которой проводится радиационный контроль. На территории зоны наблюдения, размеры которой, как правило, в 3...4 раза больше размеров санитарно-защитной зоны, проводится радиационный контроль.

Если же перечисленные приемы по каким-либо причинам неосуществимы или недостаточны, то следует применять материалы, эффективно ослабляющие излучение.

Защитные экраны следует выбирать в зависимости от вида ионизирующего излучения. Для защиты от α-излучения применяют экраны из стекла, плексигласа толщиной в несколько миллиметров (слой воздуха в несколько сантиметров).

В случае β-излучения используют материалы с малой атомной массой (например, алюминий), а чаще комбинированные (со стороны источника - материал с малой, а затем далее от источника - материал с большей атомной массой).

Для γ-квантов и нейтронов, проникающая способность которых значительно выше, необходима более массивная защита. Для зашиты от γ-излучений применяют материалы с большой атомной массой и высокой плотностью (свинец, вольфрам), а также более дешевые материалы и сплавы (сталь, чугун). Стационарные экраны выполняют из бетона.

Для защиты от нейтронного облучения применяют бериллий, графит и материалы, содержащие водород (парафин, вода). Широко применяют бор и его соединения для зашиты от нейтронных потоков с малой энергией.

62. Классы опасности работ при эксплуатации открытых источников ионизирующего излучения.

63. Вредное действие шума на организм человека.

64. Оценка шумовой обстановки в рабочей зоне с помощью объективных и субъективных характеристик шума.

65. Мероприятия по ограничению воздействия шума на организм человека.

66. Допустимые уровни звукового давления и эквивалентных уровней шума.

67. Действие инфразвука на организм человека. Мероприятия по защите от вредного действия инфразвука.

68. Опасность воздействия на организм человека ультразвуковых колебаний.

69. Допустимые уровни ультразвука на рабочих местах.

70. Вибрация при работе машин и механизмов и ее вредное действие на человека.

71. Нормирование и контроль уровней общей вибрации и вибрации передаваемой на руки работающих.

72. Влияние температуры, относительной влажности подвижности воздуха на жизнедеятельность и здоровье человека.

73. Опасность нарушения теплообмена организма человека с окружающей средой.

74. Нормы метеоусловий в рабочей зоне.

75. Основные способы создания благоприятных метеоусловий, отвечающих санитарно-гигиеническим требованиям.

76. Роль освещения в обеспечении здоровых и безопасных условий труда.

77. Нормы естественного освещения. Способы проверки соответствия фактических условий естественного освещения нормативным требованиям.

78. Нормы искусственного освещения.

79. Общие принципы организации рационального освещения рабочих мест.

80. Повышенное и пониженное атмосферное давление. Методы защиты при работе в условиях повышенного и пониженного атмосферного давления.

Биологические факторы.

81. Разновидности заболеваний, состояния носительства и интоксикаций, вызванные микро- и макроорганизмами.

82. Сенсибилизация микро- и макроорганизмами.

83. Методы обеспечения безопасности технологического процесса биологического профиля.

84. Методы обеспечения безопасности труда и оборудование биологических лабораторий.

85. Требования, предъявляемые к средствам защиты, используемым в биологических лабораториях, при работе с микроорганизмами различных групп патогенности.

86. Специальные профилактические мероприятия при воздействии биологических факторов.

Психо-физиологические факторы.

87. Перечень вредных факторов психо-физиологического воздействия (тяжесть и напряженность трудового процесса, эргономические параметры оборудования).

88. Методы предотвращения и профилактики воздействия психофизиологических факторов.

Сочетанное действие факторов опасного и вредного воздействия.

89. Комплекс мероприятий по нормализации условий труда при работе с вычислительной техникой.

  • Ионизирующее излучение - это вид энергии, высвобождаемой атомами в форме электромагнитных волн или частиц.
  • Люди подвергаются воздействию природных источников ионизирующего излучения, таких как почва, вода, растения, и воздействию искусственных источников, таких как рентгеновское излучение и медицинские устройства.
  • Ионизирующее излучение имеет многочисленные полезные виды применения, в том числе в медицине, промышленности, сельском хозяйстве и в научных исследованиях.
  • По мере расширения использования ионизирующего излучения увеличивается и потенциал опасностей для здоровья, если оно используется или ограничивается ненадлежащим образом.
  • Острое воздействие на здоровье, такое как ожог кожи или острый лучевой синдром, может возникнуть, когда доза облучения превышает определенные уровни.
  • Низкие дозы ионизирующего излучения могут увеличить риск более долгосрочных последствий, таких как рак.

Что такое ионизирующее излучение?

Ионизирующее излучение — это вид энергии, высвобождаемой атомами в форме электромагнитных волн (гамма- или рентгеновское излучение) или частиц (нейтроны, бета или альфа). Спонтанный распад атомов называется радиоактивностью, а избыток возникающей при этом энергии является формой ионизирующего излучения. Нестабильные элементы, образующиеся при распаде и испускающие ионизирующее излучение, называются радионуклидами.

Все радионуклиды уникальным образом идентифицируются по виду испускаемого ими излучения, энергии излучения и периоду полураспада.

Активность, используемая в качестве показателя количества присутствующего радионуклида, выражается в единицах, называемых беккерелями (Бк): один беккерель — это один акт распада в секунду. Период полураспада — это время, необходимое для того, чтобы активность радионуклида в результате распада уменьшилась наполовину от его первоначальной величины. Период полураспада радиоактивного элемента — это время, в течение которого происходит распад половины его атомов. Оно может находиться в диапазоне от долей секунды до миллионов лет (например, период полураспада йода-131 составляет 8 дней, а период полураспада углерода-14 — 5730 лет).

Источники излучения

Люди каждый день подвергаются воздействию естественного и искусственного излучения. Естественное излучение происходит из многочисленных источников, включая более 60 естественным образом возникающих радиоактивных веществ в почве, воде и воздухе. Радон, естественным образом возникающий газ, образуется из горных пород, почвы и является главным источником естественного излучения. Ежедневно люди вдыхают и поглощают радионуклиды из воздуха, пищи и воды.

Люди подвергаются также воздействию естественного излучения из космических лучей, особенно на большой высоте. В среднем 80% ежегодной дозы, которую человек получает от фонового излучения, это естественно возникающие наземные и космические источники излучения. Уровни такого излучения варьируются в разных реогрфических зонах, и в некоторых районах уровень может быть в 200 раз выше, чем глобальная средняя величина.

На человека воздействует также излучение из искусственных источников — от производства ядерной энергии до медицинского использования радиационной диагностики или лечения. Сегодня самыми распространенными искусственными источниками ионизирующего излучения являются медицинские аппараты, как рентгеновские аппараты, и другие медицинские устройства.

Воздействие ионизирующего излучения

Воздействие излучения может быть внутренним или внешним и может происходить различными путями.

Внутренне воздействие ионизирующего излучения происходит, когда радионуклиды вдыхаются, поглощаются или иным образом попадают в кровообращение (например, в результате инъекции, ранения). Внутреннее воздействие прекращается, когда радионуклид выводится из организма либо самопроизвольно (с экскрементами), либо в результате лечения.

Внешнее радиоактивное заражение может возникнуть, когда радиоактивный материал в воздухе (пыль, жидкость, аэрозоли) оседает на кожу или одежду. Такой радиоактивный материал часто можно удалить с тела простым мытьем.

Воздействие ионизирующего излучения может также произойти в результате внешнего излучения из соответствующего внешнего источника (например, такое как воздействие радиации, излучаемой медицинским рентгеновским оборудованием). Внешнее облучение прекращается в том случае, когда источник излучения закрыт, или когда человек выходит за пределы поля излучения.

Воздействие ионизирующего излучения можно классифицировать по трем случаям воздействия.

Первый случай - это запланированное воздействие, которое обусловлено преднамеренным использованием и работой источников излучения в конкретных целях, например, в случае медицинского использования излучения для диагностики или лечения пациентов, или использование излучения в промышленности или в целях научных исследований.

Второй случай — это существующие источники воздействия, когда воздействие излучения уже существует и в случае которого необходимо принять соответствующие меры контроля, например, воздействие радона в жилых домах или на рабочих местах или воздействие фонового естественного излучения в условиях окружающей среды.

Последний случай — это воздействие в чрезвычайных ситуациях, обусловленных неожиданными событиями, предполагающими принятие оперативных мер, например, в случае ядерных происшествий или злоумышленных действий.

Последствия ионизирующего излучения для здоровья

Радиационное повреждение тканей и/или органов зависит от полученной дозы облучения или поглощенной дозы, которая выражается в грэях (Гр). Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред. Зиверт (Зв) - единица эффективной дозы, в которой учитывается вид излучения и чувствительность ткани и органов.

Зиверт (Зв) — это единица взвешенной дозы радиации, называемой также эффективной дозой. Она дает возможность измерить ионизирующее излучение с точки зрения потенциала нанесения вреда. Зв учитывает вид радиации и чувствительность органов и тканей.
Зв является очень большой единицей, поэтому более практично использовать меньшие единицы, такие как миллизиверт (мЗв) или микрозиверт (мкЗв). В одном мЗв содержится тысяча мкЗв, а тысяча мЗв составляют один Зв. Помимо количества радиации (дозы), часто полезно показать скорость выделения этой дозы, например мкЗв/час или мЗв/год.

Выше определенных пороговых значений облучение может нарушить функционирование тканей и/или органов и может вызвать острые реакции, такие как покраснение кожи, выпадение волос, радиационные ожоги или острый лучевой синдром. Эти реакции являются более сильными при более высоких дозах и более высокой мощности дозы. Например, пороговая доза острого лучевого синдрома составляет приблизительно 1 Зв (1000 мЗв).

Если доза является низкой и/или воздействует длительный период времени (низкая мощность дозы), обусловленный этим риск существенно снижается, поскольку в этом случае увеличивается вероятность восстановления поврежденных тканей. Тем не менее риск долгосрочных последствий, таких как рак, который может проявиться через годы и даже десятилетия, существует. Воздействия этого типа проявляются не всегда, однако их вероятность пропорциональна дозе облучения. Этот риск выше в случае детей и подростков, так как они намного более чувствительны к воздействию радиации, чем взрослые.

Эпидемиологические исследования в группах населения, подвергшихся облучению, например людей, выживших после взрыва атомной бомбы, или пациентов радиотерапии, показали значительное увеличение вероятности рака при дозах выше 100 мЗв. В ряде случаев более поздние эпидемиологические исследования на людях, которые подвергались воздействию в детском возрасте в медицинских целях (КТ в детском возрасте), позволяют сделать вывод о том, что вероятность рака может повышаться даже при более низких дозах (в диапазоне 50-100 мЗв).

Дородовое воздействие ионизирующего излучения может вызвать повреждение мозга плода при сильной дозе, превышающей 100 мЗв между 8 и 15 неделей беременности и 200 мЗв между 16 и 25 неделей беременности. Исследования на людях показали, что до 8 недели или после 25 недели беременности связанный с облучением риск для развития мозга плода отсутствует. Эпидемиологические исследования свидетельствуют о том, что риск развития рака у плода после воздействия облучения аналогичен риску после воздействия облучения в раннем детском возрасте.

Деятельность ВОЗ

ВОЗ разработала радиационную программу защиты пациентов, работников и общественности от опасности воздействия радиации на здоровье в планируемых, существующих и чрезвычайных случаях воздействия. Эта программа, которая сосредоточена на аспектах общественного здравоохранения, охватывает деятельность, связанную с оценкой риска облучения, его устранением и информированием о нем.

В соответствии с основной функцией, касающейся "установления норм и стандартов, содействия в их соблюдении и соответствующего контроля" ВОЗ сотрудничает с 7 другими международными организациями в целях пересмотра и обновления международных стандартов базовой безопасности, связанной с радиацией (СББ). ВОЗ приняла новые международные СББ в 2012 году и в настоящее время проводит работу по оказанию поддержки в осуществлении СББ в своих государствах-членах.

Атомная энергия достаточно активно используется с мирными целями, например, в работе рентгеновского аппарата, ускорительной установки, что позволило распространять ионизирующие излучения в народном хозяйстве. Учитывая то, что человек ежедневно подвергается его воздействию, необходимо узнать, какими могу быт последствия опасного контакта и как обезопасить себя.

Основная характеристика

Ионизирующее излучение – это разновидность энергии лучистой, попадающей в конкретную среду, вызывая процесс ионизации в организме. Подобная характеристика ионизирующих излучений подходит для рентгеновских лучей, радиоактивных и высоких энергий, а также многое другое.

Ионизирующее излучение оказывает непосредственное влияние на организм человека. Несмотря на то что ионизирующее излучение может применяться в медицине, оно чрезвычайно опасно, о чем свидетельствует его характеристика и свойства.

Известными разновидностями являются облучения радиоактивные, которые появляются по причине произвольного расщепления атомного ядра, что вызывает трансформацию химических, физических свойств. Вещества, которые могут распадаться, считаются радиоактивными.

Они бывают искусственными (семьсот элементов), естественными (пятьдесят элементов) – торий, уран, радий. Следует отметить, что у них имеются канцерогенные свойства, выделяются токсины в результате воздействия на человека могут стать причиной рака, лучевой болезни.

Необходимо отметить следующие виды ионизирующих излучений, которые оказывают воздействие на организм человека:

Альфа

Считаются положительно заряженными ионами гелия, которые появляются в случае распада ядер тяжелых элементов. Защита от ионизирующих излучений осуществляется с помощью бумажного листка, ткани.

Бета

– поток отрицательно заряженных электронов, которые появляются в случае распада радиоактивных элементов: искусственных, естественных. Поражающий фактор намного выше, чем у предыдущего вида. В качестве защиты понадобится толстый экран, более прочный. К таким излучениям относятся позитроны.

Гамма

– жесткое электромагнитное колебание, появляющееся впоследствии распада ядер радиоактивных веществ. Наблюдается высокий проникающий фактор, является самым опасным излучением из трех перечисленных для организма человека. Чтобы экранировать лучи, нужно воспользоваться специальными устройствами. Для этого понадобятся хорошие и прочные материалы: вода, свинец и бетон.

Рентгеновское

Ионизирующее излучение формируется в процессе работы с трубкой, сложными установками. Характеристика напоминает гамма лучи. Отличие заключается в происхождении, длине волны. Присутствует проникающий фактор.

Нейтронное

Излучение нейтронное – это поток незаряженных нейтронов, которые входя в состав ядер, кроме водорода. В результате облучения, вещества получают порцию радиоактивности. Имеется самый большой проникающий фактор. Все эти виды ионизирующих излучений очень опасны.

Главные источники излучения

Источники ионизирующего излучения бывают искусственными, естественными. В основном организм человека получает радиацию от естественных источников, к ним относятся:

  • земная радиация;
  • облучение внутреннее.

Что касается источников земной радиации, многие из них канцерогенные. К ним относят:

  • уран;
  • калий;
  • торий;
  • полоний;
  • свинец;
  • рубидий;
  • радон.

Опасность состоит в том, что они канцерогенные. Радон – газ, у которого отсутствует запах, цвет, вкус. Он тяжелее воздуха в семь с половиной раз. Продукты его распада намного опаснее, чем газ, поэтому воздействие на организм человека крайне трагично.

К искусственным источникам относятся:

  • энергетика ядерная;
  • фабрики обогатительные;
  • рудники урановые;
  • могильники с отходами радиоактивными;
  • рентгеновские аппараты;
  • взрыв ядерный;
  • научные лаборатории;
  • радионуклиды, которые активно используют в современной медицине;
  • осветительные устройства;
  • компьютеры и телефоны;
  • бытовая техника.

При наличии указанных источников поблизости, существует фактор поглощенной дозы ионизирующего излучения, единица которого зависит от продолжительности воздействия на организм человека.

Эксплуатация источников ионизирующего излучения происходит ежедневно, например: когда вы работаете за компьютером, смотрите телепередачу или говорите по мобильному телефону, смартфону. Все перечисленные источники в какой-то мере канцерогенные, они способны вызвать тяжелые и смертельные заболевания.

Размещение источников ионизирующего излучения включает в себя перечень важных, ответственных работ, связанных с разработкой проекта по расположению облучающих установок. Во всех источниках излучения содержится определенная единица радиации, каждая из которых оказывает определенное воздействие на организм человека. Сюда можно отнести манипуляции, проводимые для монтажа, введения данных установок в эксплуатацию.

Следует указать, что обязательно проводится утилизация источников ионизирующего излучения.

Это процесс, который помогает вывести из эксплуатации генерирующие источники. Данная процедура состоит из технических, административных мер, которые направлены на обеспечение безопасности персонала, населения, а также присутствует фактор защиты окружающей среды. Канцерогенные источники и оборудование являются огромной опасностью для организма человека, поэтому их нужно утилизировать.

Особенности регистрации излучений

Характеристика ионизирующих излучений показывает, что они невидимые, у них нет запаха и цвета, поэтому их сложно заметить.

Для этого существуют методы регистрации ионизирующих излучений. Что касается способов обнаружения, измерения, то все осуществляется косвенно, за основу берется какое-либо свойство.

Используют такие методы обнаружения ионизирующих излучений:

  • Физический: ионизационный, пропорциональный счетчик, газоразрядный счетчик Гейгера-Мюллера, камера ионизационная, счетчик полупроводниковый.
  • Калориметрический метод обнаружения: биологический, клинический, фотографический, гематологический, цитогенетический.
  • Люминесцентный: счетчики флуоресцентный и сцинтилляционный.
  • Биофизический способ: радиометрия, расчетный.

Дозиметрия ионизирующих излучений осуществляется с помощью приборов, они способны определить дозу излучения. Прибор включает в себя три основные части – счетчик импульса, датчик, источник питания. Дозиметрия излучений возможна благодаря дозиметру, радиометру.

Влияния на человека

Действие ионизирующего излучения на организм человека особенно опасно. Возможны такие последствия :

  • имеется фактор очень глубокого биологического изменения;
  • присутствует накопительный эффект единицы поглощенной радиации;
  • эффект проявляется через время, так как отмечается скрытый период;
  • у всех внутренних органов, систем разная чувствительность к единице поглощенной радиации;
  • радиация влияет на все потомство;
  • эффект зависит от единицы поглощенной радиации, дозы облучения, продолжительности.

Несмотря на использование радиационных приборов в медицине, их действие может быть пагубным. Биологическое действие ионизирующих излучений в процессе равномерного облучения тела, в расчете 100% дозы, происходит следующее:

  • костный мозг – единица поглощенной радиации 12%;
  • легкие – не менее 12%;
  • кости – 3%;
  • семенники, яичники – поглощенной дозы ионизирующего излучения около 25%;
  • железа щитовидная – единица поглощенной дозы около 3%;
  • молочные железы – приблизительно 15%;
  • остальные ткани – единица поглощенной дозы облучения составляет 30%.

В результате могут возникать различные заболевания вплоть до онкологии, паралича и лучевой болезни. Чрезвычайно опасно для детей и беременных, так как происходит аномальное развитие органов и тканей. Токсины, радиация – источники опасных заболеваний.

Проходя через вещество, все виды ионизирующих излучений вызывают ионизацию, возбуждение и распад молекул. Аналогичный эффект наблюдается при облучении человеческого организма. Поскольку основную массу (70%) организма составляет вода, его поражение при облучении осуществляется посредством так называемого косвенного воздействия : сначала излучение поглощается молекулами воды, а затем ионы, возбужденные молекулы и фрагменты распавшихся молекул вступают в химические реакции с биологическими веществами, составляющими организм человека, вызывая их повреждение. В случае облучения нейтронами в организме могут дополнительно образовываться радионуклиды за счет поглощения нейтронов ядрами элементов, содержащихся в организме.

Проникая в организм человека, ионизирующие излучения могут стать причиной тяжелых заболеваний. Физические, химические и биологические превращения вещества при взаимодействии с ним ионизирующих излучений называют радиационным эффектом , который может привести к таким серьезным заболеваниям, как лучевая болезнь, белокровие (лейкемия), злокачественные опухоли, заболевания кожи. Могут возникнуть и генетические последствия, ведущие к наследственным заболеваниям.

Ионизация живой ткани приводит к разрыву молекулярных связей и изменению химической структуры соединений. Изменения в химическом составе молекул приводят к гибели клеток. В живой ткани происходит расщепление воды на атомарный водород и гидроксильную группу, которые образуют новые химические соединения, не свойственные здоровой ткани. В результате происшедших изменений нормальное течение биохимических процессов и обмен веществ нарушаются.

Облучение организма человека может быть внешним и внутренним. При внешнем облучении , которое создается закрытыми источниками, опасны излучения, обладающие большой проникающей способностью. Внутреннее облучение происходит, когда радиоактивные вещества попадают в организм при вдыхании воздуха, загрязненного радиоактивными элементами, через пищеварительный тракт (при приеме пищи, загрязненной воды и курении) и в редких случаях через кожу. Внутреннему облучению организм подвергается до тех пор, пока радиоактивное вещество не распадется или не выведется в результате физиологического обмена, поэтому наибольшую опасность представляют радиоактивные изотопы с большим периодом полураспада и интенсивным излучением. Характер повреждений и их тяжесть определяются поглощенной энергией излучения, которая прежде всего зависит от мощности поглощенной дозы, а также от вида излучения, продолжительности облучения, биологических особенностей и размеров облучаемой части тела и индивидуальной чувствительности организма.

При воздействии разных видов радиоактивных излучений на живые ткани определяющими являются проникающая и ионизирующая способности излучения. Проникающая способность излучения характеризуется длиной пробега 1 – толщиной материала, необходимой для поглощения потока. Например, длина пробега альфа-частиц в живой ткани несколько десятков микрометров, а в воздухе 8–9 см. Поэтому при внешнем облучении кожа предохраняет организм от воздействия альфа- и мягкого бета- излучения, проникающая способность которых невелика.

Разные виды излучений при одинаковых значениях поглощенной дозы вызывают разное биологическое поражение.

Заболевания, вызванные радиацией, могут быть острыми и хроническими. Острые поражения наступают при облучении большими дозами за малое время. Очень часто после выздоровления наступает раннее старение, обостряются прежние заболевания. Хронические поражения ионизирующими излучениями бывают как общими, так и местными. Развиваются они всегда в скрытой форме в результате систематического облучения дозами, превышающими предельно допустимую, полученными как при внешнем облучении, так и при попадании в организм радиоактивных веществ.

Опасность лучевого поражения в значительной степени зависит от того, какой орган подвергся облучению. По избирательной способности накапливаться в отдельных критических органах (при внутреннем облучении) радиоактивные вещества можно разделить на три группы:

  • – олово, сурьма, теллур ниобий, полоний и др. распределяются в организме равномерно;
  • – лантан, церий, актиний, торий и др. накапливаются в основном в печени;
  • – уран, радий, цирконий, плутоний, стронций и др. накапливаются в скелете.

Индивидуальная чувствительность организма сказывается при малых дозах облучения (менее 50 мЗв/год), при увеличении дозы она проявляется в меньшей степени. Организм наиболее устойчив к облучению в возрасте 25– 30 лет. Заболевание нервной системы и внутренних органов снижает сопротивляемость организма облучению.

При определении доз облучения основными являются сведения о количественном содержании радиоактивных веществ в теле человека, а не данные о концентрации их в окружающей среде.

Подробности Просмотров: 7330

В обычных условиях каждый человек непрерывно подвергается воздействию ионизирующей радиации в результате космического излучения, а также вследствие излучения естественных радионуклидов, находящихся в земле, пище, растениях и в самом организме человека.

Уровень естественной радиоактивности, вызываемый естественным фоном, невелик. Такой уровень облучения привычен для человеческого организма и считается безвредным для него.

Техногенное облучение возникает от техногенных источников как в нормальных, так и в аварийных условиях.

Различные виды радиоактивных излучений могут вызывать в тканях организма определенные изменения. Эти изменения связаны с возникающей при облучении ионизацией атомов и молекул клеток живого организма.

Работа с радиоактивными веществами при отсутствии надлежащих мер защиты может привести к облучению дозами, оказывающими вредное влияние на организм человека.

Контакт с ионизирующими излучениями представляет серьезную опасность для человека. Степень опасности зависит как от величины поглощенной энергии излучения, так и от пространственного распределения поглощенной энергии в организме человека.

Радиационная опасность зависит от вида излучения (коэффициент качества излучения). Тяжелые заряженные частицы и нейтроны более опасны, чем рентгеновское и гамма-излучение.

В результате воздействия ионизирующих излучений на организм человека в тканях могут происходить сложные физические, химические и биологические процессы. Ионизирующие излучения вызывают ионизацию молекул и атомов вещества, в результате чего молекулы и клетки ткани разрушаются.

Ионизация живых тканей сопровождается возбуждением молекул клеток, что ведет к разрыву молекулярных связей и к изменению химической структуры различных соединений.

Известно, что 2/3 общего состава ткани человека составляет вода. В связи с этим процессы ионизации живой ткани во многом определяются поглощением излучения водой клеток, ионизацией молекул воды.

Образующиеся в результате ионизации воды водород (Н) и гидроксильная группа (ОН) непосредственно либо через цепь вторичных превращений образуют продукты с высокой химической активностью: гидратный окисел (Н02) и перекись водорода (Н202), обладающие ярко выраженными окислительными свойствами и высокой токсичностью по отношению к ткани. Вступая в соединения с молекулами органических веществ, и прежде всего с белками, они образуют новые химические соединения, не свойственные здоровой ткани.

При облучении нейтронами в организме могут образоваться радиоактивные вещества из содержащихся в нем элементов, образуя наведенную активность, т. е. радиоактивность, созданную в веществе в результате воздействия на него потоков нейтронов.

Ионизация живой ткани, зависящая от энергии излучения, массы, величины электрического заряда и ионизирующей способности излучения, приводит к разрыву химических связей и изменению химической структуры различных соединений, составляющих клетки ткани.

В свою очередь, изменения в химическом составе ткани, происходящие в результате разрушения значительного числа молекул, приводят к гибели этих клеток. Причем многие излучения проникают очень глубоко и могут вызвать ионизацию, а следовательно и поражение клеток в глубоко расположенных частях человеческого тела.

В результате воздействия ионизирующих излучений нарушается нормальное течение биологических процессов и обмен веществ в организме.

В зависимости от дозы облучения и продолжительности воздействия и от индивидуальных особенностей организма эти изменения могут быть обратимыми, при которых пораженная ткань восстанавливает свою функциональную деятельность, либо необратимыми, что приведет к поражению отдельных органов или всего организма. Причем чем больше доза облучения, тем больше воздействие его на организм человека. Выше отмечалось, что наряду с процессами повреждения организма ионизирующими излучениями происходят и защитно-восстановительные процессы.

Продолжительность облучения оказывает большое влияние на эффект облучения, и следует считать, что решающее значение имеет даже не доза, а мощность дозы облучения. С увеличением мощности дозы поражающее действие возрастает. Поэтому дробное воздействие облучения меньшими дозами менее губительно, чем получение той же дозы облучения в течение однократного облучения суммарной дозой облучения.

Степень поражения организма ионизирующим излучением повышается с увеличением размеров облучаемой поверхности. Воздействие ионизирующих излучений оказывается различным в зависимости от того, какой орган подвергается облучению.

Вид излучения влияет на разрушительную способность излучения при воздействии на органы и ткани организма. Это влияние учитывает взвешивающий коэффициент для данного вида излучения, что было отмечено ранее.

Индивидуальные особенности организма сильно проявляются при малых дозах облучения. С увеличением дозы облучения влияние индивидуальных особенностей становится незначительным.

Человек наиболее устойчив к облучению в возрасте от 25 до 50 лет. У молодых людей чувствительность к облучению выше, чем у людей среднего возраста.

Биологическое воздействие ионизирующих излучений в значительной степени зависит от состояния центральной нервной системы и внутренних органов. Нервные заболевания, а также заболевания сердечно-сосудистой системы, кроветворных органов, почек, желез внутренней секреции снижают выносливость человека к облучению.

Особенности воздействия радиоактивных веществ, попавших внутрь организма, связаны с возможностью длительного их нахождения в организме и непосредственного воздействия на внутренние органы.

Внутрь организма человека радиоактивные вещества могут поступать при вдыхании воздуха, загрязненного радионуклидами, через пищеварительный тракт (при еде, питье, курении), через поврежденную и неповрежденную кожу.

Г азообразные радиоактивные вещества (радон, ксенон, криптон и др.) легко проникают через дыхательные пути, быстро всасываются, вызывая явления общего поражения. Газы относительно быстро выделяются из организма, большая их часть выделяется через дыхательные пути.

Проникновение в легкие распыленных радиоактивных веществ зависит от степени дисперсности частиц. Частицы размером более 10 мк, как правило, задерживаются в носовой полости и в легкие не проникают. Частицы размером менее 1 мк, попавшие при вдыхании внутрь организма, удаляются с воздухом при выдыхании.

Степень опасности поражения зависит от химической природы этих веществ, а также от скорости выведения радиоактивного вещества из организма. Менее опасны радиоактивные вещества:

быстро обращающиеся в организме (вода, натрий, хлор и др.) и не задерживающиеся в организме на длительное время;

не усваиваемые организмом;

не образующие соединений, входящих в состав тканей (аргон, ксенон, криптон и др.).

Некоторые радиоактивные вещества почти не выводятся из организма и накапливаются в нем, при этом одни из них (ниобий, рутений и др.) равномерно распределяются в организме, другие сосредоточиваются в определенных органах (лантан, актиний, торий - в печени, стронций, уран, радий - в костной ткани), приводя к их быстрому повреждению.

При оценке действия радиоактивных веществ следует также учитывать период их полураспада и вид излучения. Вещества с малым периодом полураспада быстро теряют активность и поэтому менее опасны.

Каждая доза излучения оставляет глубокий след в организме. Одним из отрицательных свойств ионизирующих излучений является его суммарное, кумулятивное действие на организм.

Кумулятивное действие оказывается особенно сильным при попадании в организм радиоактивных веществ, отлагающихся в определенных тканях. При этом, присутствуя в организме изо дня в день в течение длительного срока, они облучают близлежащие клетки и ткани.

Различают следующие виды облучений:

хроническое (постоянное или прерывистое действие ионизирующего излучения в течение длительного времени);

острое (однократное, кратковременное лучевое воздействие);

общее (облучение всего организма);

местное (облучение части организма).

Результат воздействия ионизирующего излучения и при внешнем, и при внутреннем облучении зависит от дозы облучения, продолжительности воздействия, вида облучения, индивидуальной чувствительности и величины облучаемой поверхности. При внутреннем облучении эффект воздействия зависит, кроме того, от физико-химических свойств радиоактивных веществ и их поведения в организме.

На большом экспериментальном материале с животными, а также путем обобщения опыта работы людей с радионуклидами в общих чертах было установлено, что при воздействии на человека определенных доз ионизирующих излучений они не вызывают в организме существенных необратимых изменений. Такие дозы называются предельными.

Предел дозы - величина эффективной годовой или эквивалентной дозы техногенного облучения, которая не должна превышаться в условиях нормальной работы. Соблюдение предела годовой дозы предотвращает возникновение детерминированных эффектов, а вероятность стохастических эффектов сохраняется при этом на приемлемом уровне.

Детерминированные эффекты излучения - клинически выявляемые вредные биологические эффекты, вызываемые ионизирующим излучением, в отношении которых предполагается существование порога, ниже которого эффект отсутствует, а выше - тяжесть эффекта зависит от дозы.

Стохастические эффекты излучения - вредные биологические эффекты, вызываемые ионизирующим излучением, не имеющие дозового порога возникновения, вероятность возникновения которых пропорциональна дозе и для которых тяжесть проявления не зависит от дозы.

В связи с изложенным вопросы защиты работающих от вредного воздействия ионизирующих излучений носят разносторонний характер и регламентируются различными правовыми актами.



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные