Определение угла падения солнечных лучей география. Введение

Жизнь на нашей планете зависит от количества солнечного света и тепла. Страшно представить даже на миг, что было бы, если бы на небе не было такой звезды, как Солнце. Каждая травинка, каждый листочек, каждый цветочек нуждается в тепле и свете, как люди в воздухе.

Угол падения лучей солнца равен высоте солнца над горизонтом

Количество солнечного света и тепла, которое поступает на земную поверхность, прямо пропорционально углу падения лучей. Солнечные лучи могут падать на Землю под углом от 0 до 90 градусов. Угол попадания лучей на землю разный, потому что наша планета имеет форму шара. Чем он больше, тем светлее и теплее.

Таким образом, если луч идёт под углом 0 градусов, он только скользит вдоль поверхности земли, не нагревая её. Такой угол падения бывает на Северном и Южном полюсах, за полярным кругом. Под прямым углом солнечные лучи падают на экватор и на поверхность между Южным и

Если угол попадания солнечных лучей на землю прямой, это говорит о том, что

Таким образом, лучей на поверхность земли и высота солнца над горизонтом равны между собой. Зависят они от географической широты. Чем ближе к нулевой широте, тем угол падения лучей ближе к 90 градусам, тем выше находится солнце над горизонтом, тем теплее и светлее.

Как солнце изменяет свою высоту над горизонтом

Высота солнца над горизонтом не является постоянной величиной. Напротив, она всегда изменяется. Причина этого кроется в непрерывном движении планеты Земля вокруг звезды Солнце, а также вращении планеты Земля вокруг собственной оси. В результате день сменяет ночь, а времена года друг друга.

Территория между тропиками получает больше всех тепла и света, здесь день и ночь практически равны друг другу по продолжительности, а солнце находится в зените 2 раза в год.

Поверхность за полярным кругом получает всех меньше тепла и света, здесь существуют такие понятия, как и ночь, которые длятся около полугода.

Дни осеннего и весеннего равноденствия

Выделены 4 основные астрологические даты, которые определяет высота солнца над горизонтом. 23 сентября и 21 марта - дни осеннего и весеннего равноденствия. Это означает, что высота солнца над горизонтом в сентябре и марте в эти дни 90 градусов.

Южное и освещаются солнцем одинаково, а долгота ночи равна долготе дня. Когда в Северном полушарии наступает астрологическая осень, то в Южном, наоборот, весна. То же самое можно сказать о зиме и лете. Если в Южном полушарии зима, то в Северном - лето.

Дни летнего и зимнего солнцестояния

22 июня и 22 декабря - дни летнего и 22 декабря наблюдается самый короткий день и самая длинная ночь в Северном полушарии, а зимнее солнце находится на самой низкой высоте над горизонтом за весь год.

Выше широты 66,5 градуса солнце находится под горизонтом и не восходит. Это явление, когда зимнее солнце не восходит на горизонт, называется полярной ночью. Самая короткая ночь бывает на широте 67 градусов и длится всего 2 суток, а самая длинная бывает на полюсах и длится 6 месяцев!

Декабрь является из всего года тем месяцем, когда в Северном полушарии самые длинные ночи. Люди в Центральной России просыпаются на работу в темноте и возвращаются тоже в темное время суток. Это тяжелый месяц для многих, так как нехватка солнечного света сказывается на физическом и моральном состоянии людей. По этой причине может даже развиться депрессия.

В Москве в 2016 г. восход солнца в декабре 1 числа будет в 08.33. При этом долгота дня составит 7 часов 29 минут. за горизонт будет очень рано, в 16.03. Ночь составит 16 часов 31 минуту. Таким образом, получается, что долгота ночи в 2 раза больше, чем долгота дня!

В этом году день зимнего солнцестояния - 21 декабря. Самый короткий день будет длиться ровно 7 часов. Затем 2 дня продержится такая же ситуация. И уже с 24 декабря день пойдёт на прибыль медленно, но верно.

В среднем в сутки будет прибавляться по одной минуте светлого времени. В конце месяца восход солнца в декабре будет ровно в 9 часов, что на 27 минут позже, чем 1-го декабря

22 июня - день летнего солнцестояния. Всё происходит с точностью до наоборот. За весь год именно в эту дату самый длинный день по продолжительности и самая короткая ночь. Это касаемо Северного полушария.

В Южном всё наоборот. С этим днём связаны интересные природные явления. За Полярным кругом наступает полярный день, солнце не заходит за горизонт на Северном полюсе 6 месяцев. В Санкт-Петербурге в июне начинаются загадочные белые ночи. Длятся они примерно с середины июня в течение двух-трёх недель.

Все эти 4 астрологические даты могут меняться на 1-2 дня, так как солнечный год не всегда совпадает с календарным годом. Также смещения происходят в високосные года.

Высота солнца над горизонтом и климатические условия

Солнце является одним из самых важных климатообразующих факторов. В зависимости от того, как изменялась высота солнца над горизонтом над конкретным участком земной поверхности, меняются климатические условия и времена года.

Например, на Крайнем Севере лучи солнца падают под очень маленьким углом и только лишь скользят вдоль поверхности земли, совсем не нагревая её. Под условием этого фактора климат здесь крайне суровый, присутствует вечная мерзлота, холодные зимы с леденящими ветрами и снегами.

Чем больше высота солнца над горизонтом, тем теплее климат. Например, на экваторе он необычайно жаркий, тропический. Сезонные колебания также в районе экватора практически не чувствуются, в этих районах вечное лето.

Измерение высоты солнца над горизонтом

Как говорится, всё гениальное - просто. Так и здесь. Прибор для измерения высоты солнца над горизонтом элементарно прост. Он представляет собой горизонтальную поверхность с шестом посередине длиной 1 метр. В солнечный день в полдень шест отбрасывает самую короткую тень. С помощью этой кратчайшей тени и проводятся расчёт и измерения. Нужно замерить угол между концом тени и отрезком, соединяющим конец шеста с концом тени. Эта величина угла и будет являться углом нахождения солнца над горизонтом. Этот прибор называется гномоном.

Гномон - это древний астрологический инструмент. Существуют и другие приборы для измерения высоты солнца над горизонтом, такие как секстант, квадрант, астролябия.

Высота солнца существенно влияет на приход солнечной радиации. Когда угол падения солнечных лучей мал, то лучи должны проходить путь сквозь толщу атмосферы. Солнечное излучение частично поглощается, часть лучей отражается от частиц, взвешенных в воздухе, и достигает земной поверхности в виде рассеянного излучения.

Высота солнца непрерывно изменяется по мере перехода от зимы к лету, как и при» смене суток. Наибольшее значение этот угол достигает в 12 ч 00 мин (солнечное время). Принято говорить, что в этот момент времени солнце находится в зените. В полдень интенсивность излучения также достигает максимального значения. Минимальные значения интенсивности излучения достигаются утром и вечером, когда солнце расположено низко над горизонтом, а также зимой. Правда, зимой на землю падает несколько больше прямого солнечного света. Это обусловлено тем, что абсолютная влажность зимнего воздуха ниже и поэтому он меньше поглощает солнечное излучение.

Солнце восходит в 6 ч 00 мин на востоке и незначительно освещает восточную фасадную стену (только в виде излучения, отраженного атмосферой). С увеличением угла падения солнечных лучей быстро возрастает интенсивность солнечной радиации, падающей на поверхность фасадной стены. Примерно в 8 ч интенсивность солнечной радиации составляет уже около 500 Вт/м², а максимального значения, равного примерно 700 Вт/м², она достигает на южной фасадной стене здания немногим ранее полудня.

При вращении земного шара вокруг своей оси за одни сутки, т. е. при видимом движении солнца вокруг земного шара, меняется угол падения солнечных лучей не только в вертикальном, но и в горизонтальном направлении. Этот угол в горизонтальной плоскости называется азимутальным углом. Он показывает, на сколько градусов угол падения солнечных лучей отклоняется от северного направления, если полный круг составляет 360 °. Вертикальный и горизонтальный углы связаны между собой так, что при изменении времен года всегда два раза в год угол высоты расположения солнца на небосводе оказывается одинаковым при одних и тех же значениях азимутального угла.

Траектории Солнца при его видимом движении вокруг земного шара зимой и летом в дни весеннего и осеннего равноденствия. Проектируя эти траектории на горизонтальную плоскость, получают плоскостное изображение, с помощью которого обеспечивается возможность точно описать положение солнца на небосводе, если смотреть с какой-то определенной точки на земном шаре. Такая карта солнечной траектории называется солнечной диаграммой или просто солнечной картой. Поскольку траектория солнца изменяется при перемещении с юга (от экватора) на север, то для каждой широты существует своя характерная солнечная карта.

Отражение солнечного излучения от поверхности земли

Зимой на вертикальные поверхности, например, на фасадные стены зданий, может отражаться от земной поверхности значительное количество дополнительного солнечного излучения. Из общего количества солнечной энергии, падающей на горизонтальную поверхность земли, до 50—80% в зависимости от чистоты снега отражается от снежного покрова. Неровная поверхность земли, оставшаяся под снежным покровом растительность и т. д. рассеивают большую часть солнечного излучения. Это означает, что только примерно половина излучения, падающего на горизонтальную поверхность, отражается и попадает на поверхность фасадной стены. Можно вычислить, что в результате отражения возрастает вероятность использования солнечного излучения примерно на 25%. Такой выигрыш имеет существенное значение, особенно в начале весны, когда угол высоты расположения солнца на небосводе быстро увеличивается и соответственно на поверхность земли будет падать и отражаться от нее большее количество солнечных лучей.

Снег является естественной теплоизоляцией; 30 см снега соответствует слою минеральной ваты толщиной 5 см. Весной снег оттаивает сначала с южной стороны, и поэтому возрастает площадь поверхности, через которую солнечный свет проникает в теплицу (если оттаивает изморозь на стекле).

Бывший директор Научно-исследовательского института метеорологии профессор Росси разработал интересный вариант строительства теплицы в Лапландии. В этом решении оптимально использованы климатические условия Лапландии как в отношении накопления солнечной энергии (на отопление), так и с точки зрения защиты теплицы от ветра и теплопотерь.

Южная половина небосвода

Хороший метод определения периода инсоляции теплицы заключается в следующем: необходимо представить, что вы стоите в этой теплице и смотрите по часовой стрелке с востока на запад и от горизонта вверх. Тем самым вы как будто находитесь в центре небосвода и теплицы, и впереди открывается вид на южную половину неба. Начиная с осени и вплоть до весны солнце восходит и заходит по такой полукуполообразной зоне. В любой день указанного периода оно перемещается вдоль поверхности этой зоны и его видно (в безоблачную погоду) с утра до вечера. В условиях Финляндии солнце никогда не светит прямо сверху вниз, как это наблюдается в южных странах недалеко от экватора (±23,5 ° северной и южной широты). Однако вследствие рассеяния солнечного излучения, например в облачный день, свет приходит в помещение теплицы со всех сторон, даже непосредственно сверху (рис. 43). Необходимо, чтобы растения ежедневно в течение как можно более длительного времени подвергались солнечному освещению, поскольку реакция фотосинтеза не происходит, если освещенность будет слишком низкой. Большинству растений требуется минимальная освещенность солнечным светом от 2000 до 3000 лк с тем, чтобы обеспечивались удовлетворительные условия их роста.

Рис. 42. Вид на южную половину небосвода из теплицы при отсутствии преград.

Рис. 43. Вид из теплицы на южную половину небосвода.

Даже в том случае, когда часть стен и потолка создают преграду, открывается 50% южной половины небосвода.

В середине зимы такие значения освещенности достигаются на открытом воздухе только в полдень примерно в течение 1 ч, а зачастую из-за толстого слоя облаков даже это исключается. Только в феврале (октябре) достигаются желаемые усредненные уровни освещенности в течение достаточно длительного времени (примерно с 9 до 15 ч).

Для выращивания растений освещенность является более важным фактором, чем температура, поэтому путем соответствующего размещения и придания формы такой теплице необходимо гарантировать, чтобы сама теплица и особенно растения получили достаточное количество световой энергии. Солнечные лучи должны проникать сквозь 1—2 слоя стеклянного или полиэтиленового покрытия, поэтому интенсивность солнечного света, попадающего в помещение теплицы, уменьшается примерно на 30%. В окружающей среде также нередко имеются здания и растения, которые создают тень и тем самым уменьшают полезную освещенность, создаваемую солнечным светом.

Существуют две причины, по которым теплицы не рекомендуется возводить полностью из прозрачных материалов: во-первых, в солнечные дни в такой теплице может накопиться слишком много лучистой энергии, в результате чего температура поднимается там до недопустимого уровня; во-вторых, светопропускающие материалы отличаются плохими теплоизоляционными свойствами, в связи с чем могут возникнуть большие теплопотери.

Для получения удовлетворительного конечного результата необходимо оптимизировать ряд факторов, например ориентацию теплицы, размер застекленной площади оболочки теплицы, ее форму и тепло-аккумулирующую способность, а также свести к минимуму затененность теплицы окружающей средой в холодное время года.

Этот процесс весьма сложен и требует помощи ЭВМ. На основе проведения автоматической обработки информации «atk» и учета практического опыта можно сформулировать «правило большого пальца» (т. е. лучшее решение), согласно которому площадь свето-пропускающего покрытия теплицы должна быть такой, чтобы открывалась половина небосвода.

Если теплица используется в основном как бытовое помещение, то площадь светопропускающего покрытия можно несколько уменьшить. В этом случае важно достигнуть благоприятной температуры, т. е. уменьшения теплопотерь, так как теплицу стремятся использовать осенью и весной вечерами, когда солнце уже за горизонтом. В этом случае небольшие участки для выращивания растений можно организовать в хорошо освещеннных местах.

Чтобы была максимальной очень важна ориентация и угол наклона коллектора . Что бы поглощать максимальное количество плоскость солнечного коллектора должна быть всегда перпендикулярна солнечным лучам. Однако солнце светит на Земную поверхность в зависимости от времени суток и года всегда под различным углом . Поэтому для монтажа солнечных коллекторов необходимо знать оптимальную ориентацию в пространстве . Для оценки оптимального ориентирования коллекторов учитывается вращение Земли вокруг Солнца и вокруг своей оси, а так же изменение расстояния от Солнца. Для определения положения или необходимо учитывать основные угловые параметры :

Широта места установки φ;

Часовой угол ω;

Угол солнечного склонения δ;

Угол наклона к горизонту β;

Азимут α;

Широта места установки (φ)показывает, насколько место находится севернее или южнее от экватора, и составляет угол от 0° до 90°,отсчитываемый от плоскости экватора до одного из полюсов - северного или южного.

Часовой угол (ω) переводит местное солнечное время в число градусов, которое солнце проходит по небу. По определение часовой угол равен нулю в полдень. Земля поворачивается на 15° за один час. Утром угол солнца отрицательный, вечером - положительный.

Угол склонения Солнца (δ) зависит от вращения Земли вокруг Солнца, поскольку орбита вращения имеет эллиптическую форму и сама ось вращения тоже наклонена, то угол меняется в течение года от значения 23.45° до -23.45°. Угол склонения становится равным нулю два раза в год в дни весеннего и осеннего равноденствия.

Склонение солнца для конкретно выбранного дня определяется по формуле:

Наклон к горизонту (β) образуется между горизонтальной плоскостью и солнечной панелью. К примеру, при монтаже на наклонной крыше угол наклона коллектора определяется крутизной ската крыши.

Азимут (α) характеризует отклонение поглощающей плоскости коллектора от южного направления, при ориентировании солнечного коллектора точно на юг азимут = 0°.

Угол падения солнечных лучей на произвольно ориентированную поверхность, имеющую определенное значение азимута α и угол наклона β, определяется по формуле:

Если в данной формуле заменить значение угла β на 0, тогда получится выражение для определения угла падения солнечных лучей на горизонтальную поверхность:

Интенсивность потока солнечного излучения для определенного положения поглощающей панели в пространстве вычисляется по формуле:

Где J s и J d интенсивность потоков прямого и рассеянного солнечного излучения падающие на горизонтальную поверхность, соответственно.

Коэффициенты положения солнечного коллектора для прямого и рассеянного солнечного излучения.

Для обеспечения попадания на абсорбер максимального (за расчетный период) количества солнечной энергии коллектор монтируют в наклонном положении с оптимальным углом наклона к горизонту β, который определяется расчетным методом и зависит от периода использования гелиосистемы. При южном ориентировании коллектора для круглогодичных гелиосистем β = φ, для сезонных гелиосистем β = φ–15°. Тогда формула примет вид, для сезонных гелиосистем:

Для круглогодичных:

Солнечные коллекторы, ориентированные в южном направлении и смонтированные под углом от 30° до 65° относительно горизонта, позволяют достичь максимального значения поглощения . Но даже при определенных отклонениях от этих условий может вырабатывать достаточное количество энергии. Установка с небольшим углом наклона более эффективна в случае, если солнечные коллекторы или солнечные батареинельзя ориентировать на юг.

К примеру, если солнечные панели ориентированы на юго-запад, с азимутом 45° и углом наклона 30°, то такая система сможет поглощать до 95% от максимального количества солнечного излучения. Или при ориентировании в восточном или западном направлении можно обеспечить до 85% попадания энергии на коллектор при установке панелей под углом 25-35°. Если угол наклона коллектора больше, то количество энергии, поступающее на поверхность коллектора, будет более равномерным, для поддержки отопления такой вариант установки более эффективен.

Зачастую ориентирование солнечного коллектора зависит от , установка коллектора производится на крыше здания, поэтому очень важно на стадии проектирования учесть возможность оптимально установки коллекторов.

В одной и той же географической точке в разное время суток солнечные лучи падают на землю под разными углами. Вычислив этот угол и зная географические координаты, можно точно вычислить астрономическое время. Возможно и обратное действие. С помощью хронометра, показывающего точное астрономическое время, можно выполнить географическую привязку точки.

Вам понадобится

  • - гномон;
  • - линейка;
  • - горизонтальная поверхность;
  • - жидкостный уровень для установления горизонтальной поверхности;
  • - калькулятор;
  • - таблицы тангенсов и котангенсов.

Инструкция

  • Найдите строго горизонтальную поверхность. Проконтролируйте ее с помощью уровня. Можно использовать как пузырьковый, так и электронный прибор. Если вы пользуетесь жидкостным уровнем, пузырек должен находиться строго в центре. Для удобства дальнейшей работы закрепите на поверхности лист бумаги. Лучше всего в данном случае использовать миллиметровку. В качестве горизонтальной поверхности можно взять лист толстой прочной фанеры. На ней не должно быть впадин и бугров.
  • Нарисуйте на миллиметровке точку или крест. Установите гномон вертикально так, чтобы его ось совпадала с вашей меткой..Гномоном называется установленный строго вертикально стержень или шест. Его вершина имеет форму острого конуса.
  • В точке окончания тени гномона поставьте вторую точку. Обозначьте ее как точку А, а первую - как точку С. Высота гномона вам должна быть известна с достаточной точностью. Чем крупнее гномон, тем точнее получится результат.
  • Измерьте расстояние от точки А до точки С любым доступным вам способом. Обратите внимание на то, чтобы единицы измерения были теми же, что и высота гномона. Если есть необходимость, переведите в наиболее удобные единицы.
  • На отдельном листе бумаги сделайте чертеж, используя полученные данные. На чертеже должен получиться прямоугольный треугольник, у которого прямой угол С - место установки гномона, катет СА - длина тени, а катет СВ - высота гномона.
  • Вычислите угол А с помощью тангенса или котангенса, используя формулу tgА=ВС/АС. Зная тангенс, определите собственно угол.
  • Полученный угол является углом между горизонтальной поверхностью и солнечным лучом. Углом падения называется угол между перпендикуляром, опущенным на поверхность, и лучом. То есть он равен 90º- А.

На изменения притока тепла в короткие периоды времени и на неравномерное распределение его в ландшафтной оболочке влияет ряд обстоятельств, из которых мы рассмотрим наиболее важные.

Небольшие периодические изменения радиации зависят прежде всего от того, что Земля обращается вокруг Солнца по эллиптической орбите и, следовательно, расстояние её от Солнца меняется. В перигелии, т. е. в наиболее близкой к Солнцу точке орбиты (Земля бывает в ней в настоящую эпоху 1 января), расстояние равно 147 млн. км; в афелии, т. е. наиболее удалённой от Солнца точке орбиты (3 июля), это расстояние уже 152 млн. км; разница составляет 5 млн. км. В соответствии с этим в начале января радиация увеличивается на 3,4% по сравнению со средней (т. е. вычисленной для среднего расстояния от Земли до Солнца), а в начале июля на 3,5% уменьшается.

Весьма важным фактором, определяющим количество радиации, получаемое тем или иным участком земной поверхности, является угол падения солнечных лучей. Если J - интенсивность радиации при вертикальном падении лучей, то при встрече их с поверхностью под углом α интенсивность радиации будет J sin α: чем острее угол, тем на большую площадь должна распределиться энергия пучка лучей и, стало быть, тем меньше её придётся на единицу площади.

Угол, образуемый солнечными лучами с земной поверхностью, зависит от рельефа местности, географической широты и высоты Солнца над горизонтом, изменяющейся как в течение суток, так и в течение года.

На неровной местности (всё равно, идёт ли речь о горах или мелких неровностях) различные элементы рельефа освещаются Солнцем неодинаково. На солнечном склоне холма угол падения лучей больше, чем на равнине у подножия холма, но на противоположном склоне этот угол очень мал. Под Ленинградом склон холма, обращённый к югу и наклоненный под углом в 10°, находится в тех же тепловых условиях, что и горизонтальная площадка под Харьковом.

Зимой обращённые к югу крутые склоны обогреваются лучше, чем пологие (так как Солнце стоит в общем низко над горизонтом). Летом пологие склоны южной экспозиции получают тепла больше, а крутые меньше, чем горизонтальная поверхность. Склоны северной экспозиции в нашем полушарии во все сезоны получают наименьшее количество радиации.

Зависимость угла падения солнечных лучей от географической широты довольно сложная, так как при существующем угле наклона эклиптики высота Солнца в данном месте (значит, и угол падения солнечных лучей на плоскость горизонта) меняется не только за сутки, но и в году. Наибольшая полуденная высота, какой на широте φ. Солнце достигает в дни равноденствий, составляет 90° - φ, в день летнего солнцестояния 90°- φ +23°,5 и в день зимнего солнцестояния 90° - φ - 23°,5.

Следовательно, наибольший угол падения солнечных лучей в полдень на экваторе в году изменяется от 90° до 66°,5, а на полюсе от -23°,5 до + 23°,5, т. е. практически от 0° до + 23°,5 (так как отрицательный угол характеризует величину погружения Солнца под горизонт).

Большую роль в преобразовании солнечной радиации играет газовая оболочка Земли. Частички воздуха, водяного пара и пылинки рассеивают солнечный свет; благодаря этому днём светло и при отсутствии прямых солнечных лучей. Атмосфера, кроме того, поглощает некоторое количество лучистой энергии, т. е. переводит её в тепловую. Наконец, поступающая в атмосферу, частично отражается обратно в мировое пространство. Особенно сильными отражателями служат облака.

В результате не вся радиация, поступившая на границу атмосферы, достигает поверхности Земли, а лишь часть её и притом качественно (по спектральному составу) изменённая, так как волны короче 0,3 μ, энергично поглощаемые кислородом и озоном, до земной поверхности не доходят, а видимые волны неодинаково рассеиваются.

Очевидно, что при отсутствии атмосферы тепловой режим Земли отличался бы от того, какой на самом деле наблюдается. Для целого ряда расчётов и сопоставлений нередко бывает удобно устранить влияние атмосферы на радиацию, иметь понятие о радиации в чистом виде. С этой целью вычисляют так называемую солнечную постоянную, т. е. количество тепла, приходящееся в 1 мин. на 1 кв. см перпендикулярной к солнечным лучам чёрной (поглощающей всю радиацию) поверхности, которое Земля получала бы при своём среднем расстоянии от Солнца и при отсутствии атмосферы. Солнечная постоянная равна 1,9 кал.

При наличии атмосферы особое значение приобретает такой фактор, влияющий на радиацию, как длина пути солнечного луча в атмосфере. Чем большую толщу воздуха должен пронизывать солнечный луч, тем больше потеряет он энергии в процессах рассеяния, отражения и поглощения. Длина пути луча непосредственно зависит от высоты Солнца над горизонтом и, следовательно, от времени суток и времени года. Если длину пути солнечного луча сквозь атмосферу при высоте Солнца 90° принять за единицу, тогда длина пути при высоте Солнца 40° удвоится, при высоте 10° станет равной 5,7 и т. д.

Для теплового режима земной поверхности очень важна ещё продолжительность освещения её Солнцем. Так как Солнце светит только днём, то определяющим фактором здесь будет длина дня, меняющаяся по временам года.

Наконец, необходимо помнить, что, хотя интенсивность радиации измеряется по отношению к поверхности, поглощающей всю радиацию, на самом деле солнечная энергия, падающая на различные по своей природе тела, поглощается далеко не одинаково. Отношение отражённой радиации к падающей называется альбедо. Давно известно, что альбедо чёрной почвы, светлых скал, травянистого пространства, зеркала водоёма и т. п. сильно разнятся. Светлые пески отражают 30-35%, чёрная почва (гумус) 26%, зелёная трава 26% радиации. Для свежевыпавшего чистого и сухого снега альбедо может достигать 97%. Влажная почва поглощает радиацию иначе, чем сухая: синяя сухая глина отражает 23% радиации, та же глина мокрая 16%. Следовательно, даже при одном и том же притоке радиации, в одних и тех же условиях рельефа, различные точки земной поверхности будут получать различное количество тепла.

Из периодических факторов, обусловливающих известный ритм в колебаниях радиации, особое значение имеет смена времён года.



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные