Электростатические фильтры промышленные. Воздушные фильтры для систем вентиляции: от бытовых до промышленных. Область применения электростатических фильтров

Методов очистки воздуха довольно много, но не все они приносят желаемый результат. Ответить на вопрос: «Как сделать воздух в помещении чистым?» – можно, только имея четкое представление о природе загрязнения и его концентрации.

Загрязнители воздуха делятся на газообразные, аэрозольные и микробиологические. Все они либо сами являются источниками запахов, либо способны переносить (распространять) как запахи, так и токсичные вещества. Например: запах табачного дыма – аэрозольное загрязнение, запах пепельницы с потухшими окурками – газовое загрязнение, а запах плесени – биоаэрозоль с адсорбированными молекулами запаха. Чтобы очистить воздух от всех классов загрязнителей, в современных воздухоочистителях, как правило, применяются несколько типов фильтров.

Виды фильтров

Удаляют из воздуха механические частицы – пыль, сажу, пыльцу растений, шерсть животных. Пылевые фильтры подразделяются по эффективности улавливания частиц и размеру задерживаемой пыли. В основном, эти фильтры используются в воздухоочистителях как первая или предварительная ступень очистки.

Электростатический фильтр используется для очистки воздуха от самой мелкой пыли, аэрозолей, дыма, сажи, копоти и любых механических частиц. Оптимальное решение для удаления из воздуха аэрозолей – класс фильтрации электростатическими фильтрами твердых, жидких и биологических аэрозолей может варьироваться от Н10 до Н14.

Основным предназначением угольных фильтров является поглощение (адсорбция) неприятных запахов – ароматических углеводородов и других соединений органической и элементорганической природы с массой более 40 а.е.

Основная задача фотокаталитического фильтра – очистка воздуха от любых газофазных загрязнителей: неприятных запахов, токсичных газов, аллергенов, а также инактивация вирусов, бактерий и спор плесени. Загрязнители адсорбируются на поверхности фотокатализатора и под действием ультрафиолетового излучения диапазона А разлагаются до безвредных составляющих воздуха – углекислого газа, воды и атмосферного азота.

Озонирование - окисление органических и биологических загрязнителей при их взаимодействии с озоном. Однако при высоких концентрациях озон является канцерогеном и крайне ядовитым веществом. Относится к группе чрезвычайно опасных веществ. Во многих странах использование озонатора в жилых и административных помещениях в присутствии людей запрещено законом.

Ультрафиолетовое (УФ) бактерицидное излучение, являющееся частью спектра электромагнитных волн оптического диапазона, применяется в качестве профилактического санитарно-противоэпидемического средства, направленного на подавление жизнедеятельности микроорганизмов на поверхностях и в воздушной среде помещений.


Постараемся понять, как очистить воздух от пыли, какие есть разновидности пылевых фильтров и чем они отличаются?

Пылевые фильтры представляют собой специальную ткань из различных волокон, способных задерживать частицы размером от 0,1 мкм и больше (для сравнения, толщина волоса – 100 мкм). Принцип их работы достаточно прост: воздух вентилятором прогоняется через фильтр, частицы пыли застревают в нем, и воздух становится чистым.

Технология использования пылевых фильтров в промышленных и бытовых очистителях широко распространена во всем мире. На Западе она носит название HEPA, т. е. High Efficiency Particulate Air, что в дословном переводе означает – высокоэффективный уловитель частиц. В России такие фильтры назывались «ткань Петрянова».

Откроем секрет: любой пылевой фильтр можно назвать HEPA, но не все они очищают воздух одинаково эффективно. Поэтому в Европе был принят стандарт EN 1822, регламентирующий класс HEPA-фильтра в зависимости от его эффективности при задержке частиц с максимальной проникающей способностью (англ. MPPS – Most Penetrating Particle Size). Для НЕРА-фильтров MPPS начинается от 0,3 мкм и выше.

Согласно международным стандартам существует 17 классов фильтрации от G1 до U17. Чем выше класс, тем лучше качество фильтрации воздуха. Из приводимых ниже данных видно, какой класс HEPA-фильтра соответствует определенной эффективности по норме EN 1822:

Классификация НЕРА-фильтров по классам чистоты

В России требования к качеству очистки воздуха устанавливаются ГОСТом Р51215-99 «Фильтры очистки воздуха. Классификация. Маркировка». Этот ГОСТ, разработанный в 1999 году Ассоциацией инженеров по контролю микрозагрязнений (АСИНКОМ), в точности повторяет европейский стандарт EN 1822. Он регламентирует классификацию всех пылевых фильтров, начиная от фильтров грубой очистки и заканчивая фильтрами сверхвысокой эффективности.

Эффективность фильтрации частиц высокоэффективными НЕРА-фильтрами

Класс фильтра

Интегральное значение

Локальное значение

эффективности, %

коэффициента проскока, %

эффективности, %

коэффициента проскока, %

Бытовые воздухоочистители Аэролайф

В бытовых воздухоочистителях Аэролайф используются НЕРА-фильтры класса фильтрации Н10. В структуру волокна фильтра включены частицы кахетина, антибактериального вещества, которое уничтожает микроорганизмы, оседающие на фильтре. Эффективность фильтров приведена в техническом описании каждой модели воздухоочистителя.

В профессиональных системах очистки воздуха Аэролайф используются фильтры стандарта НЕРА от F5 до H14. Разработанная нами технология, включающая в себя НЕРА-фильтр и блок электростатического осаждения, позволяет изготавливать фильтры высочайшего класса очистки (до U16) при минимальном сопротивлении воздушному потоку.

ГОСТ Р 51251-99 Фильтры очистки воздуха. Классификация. Маркировка.

  • + Низкая стоимость.
  • + Простота монтажа и эксплуатации.
  • - Пылевые фильтры способны удалять из воздуха только механические загрязнители. Газообразные вещества пролетают через НЕРА-фильтр.
  • - Загрязнители накапливаются на фильтрующих элементах, и при несвоевременной замене сам фильтр становится источником загрязнения в обслуживаемом помещении.
  • - Отсутствие инактивации микроорганизмов на фильтре. При замене фильтрующий элемент опасен для окружающих, т. к. на нем могут размножаться болезнетворные микроорганизмы. НЕРА-фильтры требуют специальной утилизации.
  • - Создают высокое сопротивление воздушному потоку при высоких классах фильтрации.
  • - НЕРА-фильтры имеют малую емкость по улавливаемым загрязнителям и, соответственно, требуют частой замены.

Электростатический фильтр – устройство, предназначенное для очистки воздуха от самой мелкой пыли, аэрозолей, дыма, частиц сажи, копоти, т. е. любых механических и аэрозольных частиц. Оптимальное решение для удаления из воздуха твердых, жидких и биологических аэрозолей.

Принцип работы электростатического фильтра

Процесс улавливания механических частиц в электростатическом фильтре разделен на несколько стадий:

  • - зарядка взвешенных частиц электрическим полем;
  • - движение заряженных частиц к электродам;
  • - осаждение заряженных частиц на блоке осаждения.

Принцип действия электростатических фильтров основан на притяжении электрических зарядов разной полярности. Загрязненный воздух проходит через блок зарядки аэрозолей, в котором частицы приобретают электрический заряд. Значение этого заряда зависит от конструкции коронатора и размера частицы и может составлять от 10 до 500 зарядов-электрона. Заряженные частицы, находящиеся в воздушном потоке, в результате адсорбции на их поверхности ионов и под влиянием сил электростатического поля движутся с потоком воздуха и оседают на токопроводящих пластинах противоположной полярности.

В процессе работы любого электростатического фильтра всегда образуется озон. Именно озон является источником запаха от электростатических фильтров, который принято называть «воздух, как после грозы». Необходимо отметить, что озон – сильнейший окислитель и даже в небольших количествах является ядом и канцерогеном. В коронаторах, работающих при электростатическом напряжении больше 15 кВ, происходит разрушение прочных молекул N 2 и образуются окислы азота (NO Х).

Профессиональные воздухоочистители Аэролайф

В системах очистки воздуха Аэролайф используются электростатические фильтры, совмещенные с барьерным НЕРА-фильтром. Такая комбинация не дает возможности для вторичного уноса частиц пыли, т. е. все частицы остаются в пылевом фильтре, при этом загрязнители оседают по всему объему фильтрующего элемента, а любые типы микроорганизмов инактивируются.

Преимущества и недостатки технологии:

  • + С высокой эффективностью удаляет из воздуха твердые и жидкие аэрозоли. Минимальный размер улавливаемых частиц 0,01 мкм.
  • + Не требует затрат на сменные элементы и расходные материалы.
  • + Длительный срок эксплуатации при минимальных начальных капиталовложениях.
  • - Газообразные химические загрязнители не улавливаются электростатическим фильтром.
  • - Загрязнители накапливаются на осадительных пластинах, которые, в свою очередь, требуют сервисного обслуживания.
  • - На эффективность фильтрации сильно влияют параметры улавливаемых частиц (слипаемость, химический состав, сыпучесть), а также содержание воды в капельной фазе в обрабатываемом воздушном потоке.
  • - процессе работы электростатического фильтра в воздух попадают озон и окислы азота – крайне ядовитые вещества.

Основным предназначением угольных фильтров является поглощение (адсорбция) неприятных запахов – ароматических углеводородов и других соединений органической и элементорганической природы с массой более 40 а.е. На самом деле, для удаления ароматических углеводородов эти фильтры практически незаменимы, а вот легкие соединения, такие как оксид углерода или окислы азота, ими не адсорбируются.


Принцип действия фильтров лежит в самой природе активированного угля. С точки зрения химии, уголь – это одна из форм углерода с несовершенной структурой, практически не содержащая примесей. Угольные «несовершенства» – поры, размер которых колеблется от видимых трещин и щелей до различных брешей и пустот на молекулярном уровне. Именно высокий уровень пористости делает активированный уголь «активированным».

В порах угля действует межмолекулярное притяжение – сила, которая по своей природе схожа с силой гравитации, с той лишь разницей, что действует она на молекулярном, а не на астрономическом уровне. Благодаря этому притяжению активированный уголь прекрасно поглощает и удерживает вредные вещества.


В системах очистки воздуха Аэролайф используется модифицированная угольно/целитная смесь адсорбентов. При работе такого фильтра совместно с фотокаталитическим блоком смесь адсорбентов работает как катализатор. Это стало возможным благодаря модификации поверхности угля активными центрами природного фермента каталазы (фермент, катализирующий реакцию разложения перекиси водорода на воду и молекулярный кислород). В итоге загрязнения не
накапливаются на фильтре, а постепенно разлагаются до углекислого газа и воды.

При залповых выбросах загрязнителя (открытых окнах, например) угольно-адсорбционный блок за один проход воздуха с высокой эффективностью задерживает все вредные газообразные вещества, которые впоследствии уничтожаются либо на угольно-адсорбционном катализаторе, либо в фотокаталитическом блоке.

Преимущества и недостатки технологии:

  • + Хорошо улавливают (адсорбируют) летучие газообразные примеси воздуха с атомарной массой более 40 а.е.
  • + Высокая эффективность при удалении из воздуха запахов – ароматических углеводородов и летучих ароматических соединений.
  • - Ограниченная емкость фильтра (адсорбента).
  • - Высокая стоимость сменных элементов.
  • - Селективность при очистке воздуха. Например, угарный газ, оксилы азота и др. легкие соединения адсорбционные фильтры не задерживают.
  • - Высокое динамическое сопротивление при небольших потоках воздуха.
  • - При несвоевременной замене угольный фильтр становится источником микробиологических и химических загрязнителей.
  • - Регенерация угольных фильтров либо невозможна, либо очень трудоемка.
  • - Отсутствие инактивации микроорганизмов.

Следуя научному определению, фотокатализ – это изменение скорости или возбуждение химических реакций под действием света в присутствии веществ (фотокатализаторов), которые в результате поглощения ими квантов света способны вызывать химические превращения участников реакции, вступая с последними в промежуточные химические взаимодействия и регенерируя свой химический состав после каждого цикла таких взаимодействий.

Если постараться рассказать просто о сложном физико-химическом процессе, то сущность метода состоит в окислении веществ на поверхности катализатора под действием мягкого ультрафиолетового излучения диапазона А (с длиной волны более 300 нм). Реакция протекает при комнатной температуре, при этом токсичные примеси не накапливаются на фильтре, а разрушаются до безвредных компонентов воздуха: двуокиси углерода, воды и азота.

Вредные органические и неорганические загрязнители, бактерии, вирусы, споры плесени адсорбируются на поверхности фотокатализатора и под действием мягкого ультрафиолета окисляются до углекислого газа, воды и атмосферного азота. Фактически фотокатализ дает уникальную возможность глубоко окислять органические и неорганические соединения в мягких условиях.

Подробно о фотокатализе читайте в статье

Профессиональные и бытовые очистители воздуха Аэролайф

Во всех воздухоочистителях Аэролайф в качестве фотокатализатора используется 100 % диоксид титана, допированный платиной и палладием. Все используемые источники УФ-излучения работают в безозоновой области ультрафиолета – А (320-400 нм).

Преимущества и недостатки технологии:

  • + Эффективно удаляют из воздуха все органические, элементорганические и неорганические загрязнители и все виды вирусов, бактерий, спор плесени и грибов.
  • + В процессе очистки загрязнители не накапливаются на фильтре, а полностью разлагаются до безвредных компонентов воздуха.
  • + Практически неограниченный ресурс работы фильтра и, соответственно, нулевые эксплуатационные расходы.
  • + Полная инактивация и уничтожение микробиологических загрязнителей.
  • + Неселективное уничтожение химических загрязнителей, вирусов и бактерий.
  • + Низкое динамическое сопротивление при любых расходах воздуха.
  • - Невысокая скорость очистки.
  • - При залповых выбросах может происходить проскок загрязнителей.
  • - Фильтры не предназначены для удаления механических частиц из воздуха.

Озонатор – это прибор для насыщения воздуха озоном. Озонаторы для дома и офиса есть в ассортименте практически любого магазина бытовой техники. При этом продавцы-консультанты могут активно убеждать в благотворном действии этого «волшебного» газа на здоровье всей семьи: дескать, он и воздух очищает, и бактерии убивает, и дышать становится легче. Но давайте разберемся, ведь в практике случались и смертельные исходы.

Озон является сильным антисептиком, с его помощью часто обеззараживают воду и воздух. В природе в больших количествах озон высвобождается при грозе, после чего в воздухе возникает приятный свежий запах. Именно эти факты приводят людей к выводу, что озон, безусловно, полезен, и чем его больше вокруг нас – тем лучше. Это ошибка. Необходимо понимать, что степень благоприятного влияния озона находится в очень узком диапазоне от 0,1 до 1 ppb (молекул озона на миллиард).

В концентрациях выше 1 ppb озон чрезвычайно ядовит. При высоких концентрациях его не может переносить ни один живой организм. Токсичность озона обусловлена его высокими окисляющими свойствами, вследствие которых возникают свободные радикалы кислорода. Поражение легких, снижение иммунитета и другие симптомы, вызываемые озоном в организме человека и животных, явились причиной того, что этот газ был отнесен к классу ЧРЕЗВЫЧАЙНО ОПАСНЫХ ВЕЩЕСТВ – максимальному по шкале опасности.

Всем известный городской смог отчасти состоит из озона. Во многом именно из-за этого газа у человека возникают проблемы с дыханием, боль в глазах. При длительном воздействии озона обостряются хронические заболевания и развиваются новые:
новые виды аллергии, которых человек не замечал за собой ранее;
утяжеление и учащенность дыхания;
появление начальных, а затем тяжелых форм бронхита и астмы;
неправильное развитие легких у детей;
снижение иммунитета к различным видам заболеваний;
общее ухудшение состояния легких, отеки, поражение тканей.

Для озона не существует отдельного порога, при котором он бездействует. Его высокая канцерогенность приводит к тому, что он действует отравляюще не только на людей и животных, но даже на растения: его концентрация в воздухе неоднократно уничтожала целые леса и поля с урожаем.

Для того чтобы обезопасить себя от риска отравления, вы можете провести анализ воздуха в квартире и определить, превышает ли норму концентрация озона.

Преимущества и недостатки технологии:

  • + Быстро дезинфицирует воздух, уничтожая микроорганизмы.
  • + При высоких концентрациях способен окислять и разрушать химические загрязнители.
  • - Озон при концентрациях выше 1 ppb является канцерогеном (способен вызывать рак) и очень ядовитым веществом. Относится к группе черезвычайно опасных веществ.
  • - В большинстве случаев при озонировании химические вещества не уничтожаются, а их запах маскируется озоном.
  • - При озонировании механические частицы не удаляются из воздуха.
  • - Селективность в уничтожении микроорганизмов, споры плесени не убиваются озоном.
  • - Даже при небольшой концентрации озон способен вызывать у человека различные заболевания.

Бактерицидный облучатель – устройство, предназначенное для обеззараживания воздуха и поверхностей в помещении. Его работа основана на ультрафиолетовом (УФ) излучении, которое является частью спектра электромагнитных волн оптического диапазона и подавляет жизнедеятельность микроорганизмов. Проще говоря, УФ-С излучение убивает (инактивирует) вирусы, бактерии, плесень, грибки, при этом оставляя в воздухе помещения мертвые клетки.


Бактерицидные облучатели бывают открытые и закрытые. Основное отличие этих двух типов заключается в принципе их работы. Благодаря прямым УФ-лучам, открытый тип позволяет обеззараживать как воздух, так и все поверхности в помещении. При этом люди, животные и растения не должны находиться в комнате во время работы прибора. Помимо того, что жесткий ультрафиолет сам по себе крайне вреден для человека, во время его воздействия образуется озон – вещество, которое при высоких концентрациях является чрезвычайно опасным.

Устройство закрытого типа называется бактерицидным рециркулятором. Он обеззараживает воздух, который прогоняется вентиляторами через корпус прибора, где «спрятаны» УФ-лампы. И если непрозрачный корпус защищает людей от УФ-излучения, то от воздействия озона он уберечь не может.


Несмотря на то что в последнее время бактерицидные облучатели стали популярны в быту (их устанавливают в квартирах, домах, офисах и т. д.), самое широкое применение они нашли в медицине. Конечно, в каждом процедурном кабинете, в каждой перевязочной и операционной стоят подобные лампы. Однако стоит отметить, что производительность бактерицидных облучателей сегодня не слишком высока, да и убивают они далеко не все микробы, которые могут возникать в лечебно-профилактическом учреждении. Особое место среди таких микробов занимает синегнойная палочка, которая очень опасна для каждого пациента.

Преимущества и недостатки технологии:

  • + Инактивация и уничтожение микробиологических загрязнителей.
  • + Недорогое обслуживание.
  • - Селективность в уничтожении микроорганизмов.
  • - Открытое УФ-излучение опасно для человека.
  • - Выделение озона – газа, который относится к группе чрезвычайно опасных веществ.
  • - Высокие энергозатраты.
  • - Невозможность использования в присутствии человека.
  • - Сравнительно низкая производительность.

Электростатический фильтр своими руками. Вряд ли кто-то удивиться, если сказать человеку, что воздух в городах и на некотором расстоянии от них является грязным и вредным для человека. Хотя существуют установленные нормы загрязнения воздуха, совокупность существующих производств нередко превышают эти нормы, а в особых случаях управляющие предприятиями заведомо не соблюдают законодательные акты. К этому их могут принудить сотрудники санэпидемстанции.

Но даже без этого концентрация вредных веществ в воздухе может быть катастрофически большой. Чтобы как-то снизить воздействие вредных веществ, создаются специальные очистительные устройства. Одним из таких устройств является плазменный ионизатор или по-другому - статическ ий фильтр, который защищает от пыли и мелких частиц вплоть до 0.01мкм. Его применяют в промышленности, как признанные самыми эффективными.

Каким принципом действия обладает электрический статическ ий фильтр

Принцип действия основан на ионизировании частиц пыли при помощи магнитного поля и притягивании, этих частиц, к специальным пластинам. Этому методу уже более 100 лет, хотя, конечно же, мощность данных установок с тех пор многократно возросла. Со временем электрический статическ ий фильтр скапливает большое количество пыли, в результате чего необходимо поменять или отчистить фильтр. В бытовых установках это необходимо делать вручную, а в промышленных вариантах применяются специальные автоматические установки.

Область применения данных фильтров широка, как никогда начиная от мелкобытовых устройств и заканчивая огромными заводами и другими промышленными предприятиями. Например, широко применяется электрический статическ ий фильтр на ТЭЦ где необходимо сжигать уголь или на химических предприятиях, где побочным продуктом производства могут оказаться вредные газы. На ТЭЦ из-за сжигания угля, всегда присутствует повышенное содержание золы.

В целом если смотреть шире, то практически на всех предприятиях, работающих по принципу сжигания каких-либо материалов (мусоросжигающие или мазутосжигающие) устанавливают электростатическ ие фильтры. Дело в том, что во время горения в атмосферу выделяется огромное количество вредных веществ. Чтобы атмосфера не загрязнялась необходимо проводить фильтрацию. В химическом производстве фильтры используются несколько иначе.


Конечно, они продолжают выполнять охранительную функцию, но также они улавливают полезные в производстве вещества для возврата их в цепь производства.

Достоинства и недостатки плазменного ионизатора.

Хотя может показаться, что очистка до 65% воздуха является плохим показателем среди всех остальных форм очистки, он является очень высоким при относительной дешевизне. Огромным достоинством является легкое обслуживание, что положительно влияет на снижение расходов. Следующим положительным качеством является возможность очистки очень маленьких частиц, в связи с чем, область и назначение применения весьма широки.

Главный же недостаток установки: при работе он генерирует озон. Хотя это неопасно в малых количествах в случае превышения норм необходимо его заменить. Вторым недостатком можно назвать неполную очистку, в связи, с чем необходимо подходить к очистительным мероприятия ответственно и создавать многоступенчатые системы.

На данный момент - это один из наиболее перспективных методов очистки и постоянно ведется работа над улучшением характеристик плазменных ионизаторов.

Возможность дышать чистым воздухом - это наша физиологическая потребность, залог здоровья и долголетия. Однако, мощные современные производственные предприятия загрязняют окружающую нас среду и атмосферу промышленными выбросами, опасными для человека.

Обеспечение чистоты воздушной среды при выполнении технологических процессов на предприятиях и удаление вредных примесей из нее в быту - вот те задачи, которые выполняют электростатические фильтры.

Первая такая конструкция зарегистрирована патентом США №895729 в 1907 году. Ее автор - Фредерик Коттрелл занимался исследованиями методов отделения взвешенных частиц из газообразных сред.

Для этого он использовал действие основных законов электростатического поля, пропуская газообразные смеси с твердыми мелкодисперсными примесями через электроды с положительным и отрицательным потенциалами. Противоположно заряженные ионы с частицами пыли притягивались к электродам, оседая на них, а одноименные - отталкивались.

Эта разработка послужила прототипом для создания современных электростатических фильтров .


На пластинчатые листовые электроды (принято называть термином «осадительные»), собранные в отдельные секции, и размещенные между ними металлические нити-сетки прикладываются потенциалы противоположных знаков от источника постоянного тока.

Величина напряжения между сеткой и пластинами в бытовых приборах составляет несколько киловольт. У фильтров, работающих на промышленных объектах, оно может быть увеличено на порядок.

Через эти электроды вентиляторами по специальным воздуховодам пропускается поток воздуха или газов, содержащий механические примеси и бактерии.

Под действием высокого напряжения формируется сильное электрическое поле и поверхностный коронный разряд, стекающий с нитей (коронирующих электродов). Он приводит к ионизации прилегающего к электродам воздуха с выделением анионов (+) и катионов (-), создается ионный ток.

Ионы с отрицательным зарядом под действием электростатического поля движутся к осадительным электродам, попутно заряжая встречные примеси. На эти заряды действуют электростатические силы, создающие скопление пыли на осадительных электродах. Таким способом происходит очищение прогоняемого сквозь фильтр воздуха.

При работе фильтра слой пыли на его электродах постоянно увеличивается. Его периодически необходимо удалять. У бытовых конструкций эта операция выполняется вручную. На мощных производственных установках осадительные и коронирующие электроды механически встряхивают для направления загрязнений в специальный бункер, откуда их забирают на утилизацию.

Особенности конструкций промышленного электростатического фильтра


Детали его корпуса могут быть выполнены бетонными блоками или металлическими конструкциями.

На входе загрязненного и выходе очищенного воздуха устанавливаются газораспределительные экраны, которые оптимально направляют воздушные массы между электродами.

Сбор пыли происходит в бункерах, которые обычно создают с плоским днищем и оборудуют скребковым конвейером. Пылесборники изготавливают в форме:

    лотков;

    перевернутой пирамиды;

    усеченного конуса.

Механизмы встряхивания электродов работают по принципу падающего молотка. Они могут располагаться снизу или сверху пластин. Работа этих устройств значительно ускоряет очистку электродов. Лучших результатов достигают конструкции, в которых каждый молоток воздействует на свой электрод.

Для создания высоковольтного коронирующего разряда применяются стандартные трансформаторы с выпрямителями, работающие от сети промышленной частоты или специальные высокочастотные устройства в несколько десятков килогерц. Их работой занимаются микропроцессорные системы управления.

Среди различных типов коронирующих электродов лучше всего работают спирали из нержавеющих сталей, создающие оптимальное натяжение нитей. Они меньше загрязняются, чем все остальные модели.

Конструкции осадительных электродов в виде пластин специального профиля объединяют в секции, создают для равномерного распределения поверхностных зарядов.

Промышленные фильтры для улавливания высокотоксичных аэрозолей

Пример одной из схем работы подобных устройств показан на картинке.


У этих конструкций используется двухкаскадная зона очистки воздуха, загрязненного твердыми примесями или парами аэрозолей. Самые крупные частицы оседают на предварительном фильтре.

В результате происходит коронирующий разряд и зарядка частиц примесей. Продуваемая воздушная смесь проходит через осадитель, в котором вредные вещества концентрируются на заземленных пластинах.

Расположенный после осадителя постфильтр улавливает остатки неосевших частиц. Химкассета дополнительно очищает воздух от оставшихся примесей углекислых и прочих газов.

Осажденные на пластинах аэрозоли просто стекают вниз поддона под действием сил гравитации.

Области применения промышленных электростатических фильтров

Очистка загрязненных воздушных сред используется на:

    электростанциях с котлами, сжигающими уголь;

    объектах мазутосжигающих производств;

    мусоросжигающих заводах;

    промышленных котлах химического восстановления;

    производственных печах отжига известняка;

    технологических котлах сжигания биомассы;

    предприятиях черной металлургии;

    производстве цветных металлов;

    объектах цементной промышленности;

    предприятиях переработки сельскохозяйственной продукции и других отраслях.

Возможности очистки загрязненных сред

Диапазоны работы мощных промышленных электростатических фильтров с различными вредными веществами показаны на диаграмме.


Особенности конструкций фильтров в бытовых устройствах

Очистка воздуха в жилых помещениях осуществляется:

    кондиционерами;

    ионизаторами.

Принцип работы кондиционера демонстрирует картинка.


Загрязненный воздух прогоняется вентиляторами через электроды с приложенным к ним напряжением порядка 5 киловольт. Находящиеся в воздушном потоке микробы, клещи, вирусы, бактерии погибают, а частицы примесей, заряжаясь, пролетают на электроды улавливания пыли и оседают на них.

При этом происходит ионизация воздуха и выделение озона. Поскольку он относится к разряду сильнейших природных окислителей, то все живые организмы внутри кондиционера уничтожаются.

Превышение нормативной концентрации озона в воздухе недопустимо по санитарно-гигиеническим нормам. За этим показателем тщательно следят надзорные органы производителей кондиционеров.

Особенности бытового ионизатора

Прототипом современных ионизаторов послужила разработка советского ученого Чижевского Александра Леонидовича, которую он создал для восстановления здоровья людей, изнуренных в заключении тяжелейшими каторжными работами и плохими условиями содержания.

За счет приложения высоковольтного напряжения к электродам источника, подвешенного к потолку вместо люстры освещения, в воздухе происходит ионизация с выделением полезных для здоровья катионов. Их называли «аэроионами» или «витаминами из воздуха».

Катионы придавали жизненную энергию ослабшему организму, а выделяющийся озон убивал болезнетворных микробов и бактерии.

Современные ионизаторы лишены многих недостатков, которые были в первых конструкциях. В частности, сейчас строго лимитируется концентрация озона, применяются меры к снижению действия высоковольтного электромагнитного поля, используются биполярные устройства ионизации.

Однако, стоит заметить, что многие люди до сих пор путают назначение ионизаторов и озонаторов (производство озона в максимальном количестве), применяя последние не по назначению, чем сильно вредят своему здоровью.

Ионизаторы по принципу своей работы не выполняют все функции кондиционеров и не очищают воздух от пыли.

В группу аппаратов электрического очистки входят электростатические осадители разного типа, которые традиционно называют электрофильтрами. По конструкции электрофильтры значительно отличаются от электрических п пылеуловителей, применяемых для очистки воздуха и газов, которые улавливают высокодисперсный пыль в значительных концентрациях.

В промышленности широко используют несколько типовых конструкций сухих и мокрых электрофильтров для очистки воздуха от технологических выбросов пыли

На рис 311 и 312 приведены основные виды сухих электрических фильтров

Рис 311. Принципиальная схема сухого двухзональный электрического фильтра : 1 - зона ионизации воздуха, 2 - источник питания 3 - помещу-вальна зона

Рис 312. Схема современного электрофильтра"Пеципитрон" : 1 - решетка для выравнивания потока воздуха 2 - ионизатор 3 - пластины, на которых оседают частицы пыли, 4 - источник высокого напряжения, 5 - подключение к электросети; 6 - подведение электротока напряжением 6 кВ до трубок ионизатора, 7 - подведена шина, 8 - элемент, на котором оседают частицы (общий вид

Опишем принцип работы двухзональный электрического фильтра. Поток очищаемого воздуха сначала проходит через ионизационную зону 1, имеет вид решетки из металлических пластинок с натянутыми между ними сентября ртикальнимы коронирующих электродов из тонкой проволоки. К коронирующих электродам подводится напряжение 13-15 кВ положительного полюса специального питательного электрического агрегата 2, выпрямляет переменный элек рострум и повышает его напряжение. В ионизационной зоне частицы пыли заряжаются. Далее воздух проходит через осадительной зону 3, имеет вид пакета металлических пластинок, установленных параллельно друг к другу на расстоянии от 8 до 12 мм. До пластин через одну подводится напряжение 6,5-7,5 кВ положительного заряда. Пыль осаждается на промежуточных заземленных пластинастинах.

При подаче напряжения на фильтр вокруг коронирующих электродов образуется неоднородное электрическое поле, в результате чего возникает электрический разряд. Электроны, не получили от электрического поля к остатня количества энергии, возвращаются на прежний уровень энергии, отдавая аккумулированную энергию в виде ультрафиолетовых лучей. Вследствие этого коронный разряд вызывает легкое свечение электро родеів.

В металлургической и машиностроительной промышленностях широко используются сухие горизонтальные двухсекционные электрофильтры для очистки воздуха от мелкодисперсной пыли (рис 313)

Сухие электрофильтры типа. УГМ (унифицированные горизонтальные малогабаритные) рекомендуют для тонкой очистки воздуха от пыли различной дисперсности

Мокрые электрофильтры применяют для очистки воздуха от пыли большой дисперсности, частиц смол и др.. На рис 314 изображена конструктивная схема мокрого электрофильтра типа. С. В корпусе 3 установлены и коронирующих и осадительных электродов 2, к которым подводят запыленный воздух через распределительные решетки 1. В верхней части фильтра установлены смоловловлювальни зонты 4. Уловленная на электродах смола сти кает в бункер и через гидро-затвор выводится из аппарата. При загущении смолы аппарат розигриваютрівають.

Эффективность очистки воздуха от пыли электрофильтрах можно определить по формуле. Дейча

где. Рп - удельная поверхность осадительных электродов, равная отношению поверхности осадительных элементов к расходу очищаемого воздуха в м2с/м3;. Соэ - скорость потока воздуха че-

Рис 313. Схема сухого горизонтального электрофильтра : 1 - воздухораспределительные решетка, 2 - электроды, 3 - бункер, 4 - механизм отряхивания

рез электрофильтр. Из формулы (35) следует, что эффективность очистки воздуха в электрофильтрах возрастает с увеличением значения показателя степени соэ ^:

"ОЛР 3,0. ЗД 3,9 4,6

Е 0,95 0,975 0,98 0,99

На эффективность электрофильтров также влияют конструкция ионизаторов, разрядных и осадительных электродов

Конструкция разрядных и осадительных электродов может быть разной. На рис 315 и 316 изображены конструкции различных типов разрядных и осадительных электродов

На эффективность этих электрофильтров негативно влияют следующие факторы:

Возникновение искровых зарядов при опылении осадительных электродов увлажненным пылью, которые могут вызывать электрические пробои и взрыв воздушно-пылевой смеси;

Сметания воздушным потоком с осадительных электродов осевшей пыли;

Рис 314. Схема мокрого электрофильтра типа. С

Обрыв тонких электродов, их вибрация;

Электрические пробои, возникающие вследствие попадания в осадительной зону волокон и крупных частиц пыли и вызывают ямкоподибни воронки осевшей пыли, который выносится воздушным потоком. Движение крупных х вырванных агломератов в мижелектричному пространстве может вызвать дальнейшие пробое. Кроме этого, пробои сопровождаются кратковременным значительным увеличением электрического токму.

Для предотвращения искровым разрядам и пробой регламентирующих величину электронапряжения, подаваемого на осадительных электродов, которая не должна превышать 6,6-7,5 кВ. Для предотвращения сметания и разрывам в осевшей пыли на осадительных электродах рекомендуемая скорость пылевоздушной потока - 2 м /с.

Чтобы частицы пыли успели осесть на заземленном электроде при их движении в осадительной зоне со скоростью воздушного потока в случае их входа в промежуток между пластинами фильтра, длина ихньог го пути должно быть не более

где. Ь - расстояние между помещу тельном пластинками; сол - скорость движения воздушного потока, м / с; ос - скорость сепарации пыли, м / с

При температуре 20 °. С скорость сепарации определяют по формуле

где и - напряжение поля в ионизаторе;. Ь - коэффициент, зависящий от диэлектрической постоянной величины частицы г - постоянная ве-

Рис 315. Конструкции основных типов разрядных электродов

Рис 316. Конструкции основных типов осадительных электродов

величина, зависящая от диэлектрических свойств частицы пыли и ос - электронапряжения на заряженных осадительных элементах; й - диаметр частиц пыли

С формул (36) и (37) видно, что для уменьшения длины осадительных пластинок, а значит, глубины габаритных размеров фильтра в 4 раза без снижения эффективности, межэлектродный пространство необходимо убыв шить в 2 раза. Рекомендуемое расстояние между электродами 8-12 м мм.

Для комплектования отсасывателей и вакуумных систем консолей обеспечения медицинскими газами и электропитанием используются следующие бактериальные фильтры:

1. Бактериальный фильтр "Мидисарт 2000", фильтр "Вакусарт"

Многоразовые, автоклавируемые (до 20 циклов). Соединение с вакуумным устройством- в разрыв шланга, соединяющего источник вакуума и аспирационную банку. Штуцеры под шланг внутренним диаметром 6-12 мм.

Фильтр "Мидисарт 2000" применяется для обеззараживания потока отсасываемого воздуха. Материал- ПТФЭ, диаметр фильтра- 64 мм, площадь фильтрующей поверхности- 20 см.кв., диаметр пор- 0,2 мкм.

Фильтр "Вакусарт" применяется для защиты источника вакуума. Материал- ПТФЭ, диаметр фильтра- 64 мм, площадь фильтрующей поверхности- 20 см.кв., диаметр пор- 0,45 мкм.

2. Бактериальный фильтр на основе фильтрующих мембран ММФК

Материал- Ф42Л. Состоит из держателя из автоклавируемого поликарбоната и вкладной одноразовой фильтрующей мембраны от ММФК-0 до ММФК- 4.

Соединение с вакуумным устройством- в разрыв шланга, соединяющего источник вакуума и аспирационную банку. Под шланг внутренним диаметром 8-9 мм. С одной стороны имеет внешний стандартный порт под дыхательный контур с внутренним штуцером под шланг, с другой стороны оснащен просто штуцером под шланг.

Диаметр пор мембраны: ММФК-0-0,05 мкм, ММФК-1-0,15 мкм, ММФК-0-0,25 мкм, ММФК-3-0,45 мкм, ММФК-4-0,65 мкм

3. Бактериальный фильтр электростатический ("Барьербэби")

Одноразовый. Электростатический. С одной стороны имеет внешний стандартный порт под дыхательный контур внутренним диаметром 15 мм, с другой стороны- стандартный порт под дыхательный контур с внутренним штуцером под шланг внутренним диаметром 8 мм.

Соединение с вакуумным устройством- одним концом (портом под дыхательный контур внутренним диаметром 15 мм) на специальный штуцер на корпусе источник вакуума (отсасыватель или регулятор- стабилизатор вакуума), другим концом (внутренним портом)- на шланг внутренним диаметром 8 мм.

Вместо специального штуцера для подключения фильтра можно использовать переходники (переходник под шланг внутренним диаметром 10 мм или переходник под шланг внутренним диаметром 5 мм) . Пример использования фильтра "Барьербэби" с регулятором- стабилизатором вакуума Элема-Н СД3 и аспирационной банкой Элема-Н БП2500, установленными на шине реанимационной консоли Элема-Н КМП1.

4. Бактериальный фильтр электростатический (подключение в разрыв шланга)

Одноразовый. Электростатический. С обоих сторон онащен штуцерами под шланг внутренним диаметром 5- 7 мм.

Фильтр применяется для обеззараживания потока отсасываемого воздуха. Имеет наименьшее сопротивление потоку воздуха из всех применяемых фильтров.



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные