Аппарат кислородно водородной сварки drago i. Водородная сварка - основные отличия от стандартных способов сварки

Подвидом дуговой сварки выступает сварка водородная. Технология основана на распаде воды до двух составляющих - водорода и кислорода. В чем специфика работы? Чем водородная сварка отличается от дуговой, а чем на нее похожа? Какое оборудование используется для работы? В данном материале вы найдете ответы на эти и другие вопросы.

Данная технология относится к категории безвредных, поскольку в процессе горения дуги задействован один химический элемент - водород (точнее, водяной пар). Однако за этим преимуществом кроется пара недостатков технологии. Например, поверх заготовки может образоваться слой шлака, либо сварочный шов будет тонким. Чтобы его усилить, применяют связывающие кислород органические соединения вроде толуола, бензина или бензола. Их понадобится малое количество, поэтому водородная сварка обойдется сварщику дешевле, чем другой тип газопламенной обработки.

Дуга при сварке горит в атмосфере водорода между двух неплавящихся вольфрамовых электродов. Пламя горючего элемента незаметно при дневном свете, поэтому часто применяют специальные датчики. Крупные и тяжелые баллоны с газом не используются, поскольку за их эффективностью кроется опасность для здоровья работника. Зато возникает необходимость вместо емкостей применять аппараты, заполненные водой, в которых под действием электричества жидкость распадалась бы на водород и кислород.

Решение было найдено - им стал электролизер. Это подвид сварочного аппарата, где вода распадается до двух составляющих, причем в оптимальной пропорции. Происходит диссоциация после проведения через дистиллят электрического тока. Ранние разработки удивляли громоздкостью - электролизеры могли сварить металлические листы толщиной до 6 мм, при этом весили более 300 кг. Позже создали передвижные модели, благодаря которым процесс соединения деталей стал эффективнее.

Подвидом водородной сварки выступает атомно-водородная. Обычно применяется при соединении чугунных или стальных деталей, отличается повышенной экзотермией. Редко применяется на производстве, поскольку есть опасный фактор - повышенное напряжение.

Преимущества сварки водородом

Методика известна не так, как ручная или полуавтоматическая сварка, однако имеет ряд достоинств, с которыми сварщику нужно познакомиться. Среди них:

  • редкая перезарядка сварочного аппарата;
  • оперативный вход в рабочий режим (до 5 минут в зависимости от расхода газа и параметров атмосферы);
  • высокая мощность при малых габаритах оборудования;
  • экологическая чистота (в отличие от сварки ацетиленом, где выделяются токсичные пары азота, отравляющие организм);
  • сварочный аппарат относится к классу пожаробезопасного оборудования;
  • конструкция и принцип действия таковы, что препятствуют не только возгоранию установки, но и взрыву;
  • широкий спектр материалов для обработки (цветмет, чугун, сталь, стекло и даже керамика);
  • исключено окисление свариваемых участков;
  • доступность главного расходного элемента - воды;
  • для бесперебойной работы необходимы лишь источник тока и вода (желательно дистиллированная).

Теперь - пара слов о составных элементах оборудования, используемого для водородной сварки.

Составные элементы аппарата

Традиционно основными элементами устройств для сварки водородом являются:

  • горелка;
  • шланг;
  • заправочное устройство;
  • запасное сопло;
  • охладитель-обогатитель.

Горелка предназначена для подачи газа в область соединения заготовок. Температуру пламени можно регулировать в диапазоне 600-2600 градусов. Сварочный аппарат достаточно мощный, позволяет выполнять ручную и автоматическую сварку. Если пользователь имеет базовые навыки работы с газопламенным оборудованием, эксплуатация электролизеров для водородной сварки проблем не составит. Теперь рассмотрим обработку заготовок детальнее.

Характеристика процесса

При выборе водородной сварки как метода соединения деталей пользователь обнаружит, что последнее происходит намного быстрее, чем при той же аргонодуговой или ацетиленовой. Сначала под действием высоких температур диссоциируются (распадаются) молекулы воды на кислород и водород. Далее, одноатомный водород преобразуется в двухатомный, за счет чего выделяется дополнительная тепловая энергия, ускоряющая процесс соединения.

Этот же водород расходуется на защиту зоны сварки, поэтому шов получается качественным - прочным и герметичным. Исключение составляет лишь медь и ее сплавы (за счет химических свойств материала).

Выделяемое тепло позволяет сваривать даже вольфрам (самый тугоплавкий металл с температурой плавления 3422 градуса). Здесь водород вновь выполнит роль защитного газа, препятствуя загрязнению углеродом, азотом или кислородом. Дуга, образуемая горелкой, достаточно стабильна и не зависит от первичной обработки соединяемых изделий.

Обзор оборудования

Классический пример сварочного аппарата для водородной сварки - продукт отечественного производителя «Лига». Устройства работают от сети 220 В и в качестве «топлива» используют дистиллированную воду. Применение оборудования снижает себестоимость сварочного процесса в десятки раз по сравнению с использованием габаритных газовых баллонов.

О принципе действия - коротко:

  • через дистиллят проходит электрический ток, превращая его в водород и кислород;
  • полученная смесь проходит через охладитель-обогатитель газа, где остается лишняя влага;
  • в этом же элементе электролизера к водороду добавляются пары летучих углеводородов (бензол, спирт и т.д.);
  • смесь поступает в газовую горелку;
  • для контроля мощности в конструкции предусмотрены регулятор тока и гаситель пламени.

Компания «Лига» выпускает несколько модификаций электролизных установок, а именно:

  • 02 С;
  • 02 0;
  • 22 Д.

Наиболее популярные в среде профессиональных сварщиков устройства - «Лига-02» и «Лига-22».

Водородная сварка обладает рядом преимуществ, выгодно выделяющих ее на фоне дуговой, ручной и других типов сварки. Первое достоинство для пользователя - экологическая чистота используемых элементов и безопасность. По этой причине электролизной установкой целесообразно пользоваться при больших объемах работ, либо при сварке внутри компактных помещений.

Известны ли вам нюансы работы с оборудованием и другие его особенности? Поделитесь своими навыками и знаниями в обсуждении к статье.

Многие привыкли считать, что самым доступным и экономичным видом топлива является природный газ. Но оказалось, что у этого продукта существует хороший альтернативный вариант - водород. Его получают посредством расщепления воды. Исходный компонент для получения такого топлива получается бесплатно. Водородная горелка для котла отопления, сделанная своими руками, поможет значительно сэкономить и не думать о походе в магазин. Существуют специальные правила и методы создания технической установки, предназначенной для выработки водорода.

Как получается водород?

Информацию о получении водорода часто дают учителя химии детям, обучающимся в средней школе. Метод его добычи из простой воды в химии называется электролизом. Именно с помощью такой химической реакции есть возможность получать водород.

Простое по конструкции устройство выглядит как отдельная емкость, наполненная жидкостью. Под слоем воды находятся два пластичных электрода. К ним подводят электрический ток. Из-за того, что вода обладает свойством электропроводимости, между пластинками выстраивается контакт с минимальным сопротивлением.

Проходящий по созданному водяному сопротивлению ток приводит к формированию химической реакции, в результате которой вырабатывается требуемый водород.

На этом этапе все кажется очень простым - остается лишь собрать полученный водород, чтобы использовать его как источник энергии. Но химия не может существовать без мелких деталей. Важно помнить, что если водород вступает в соединение с кислородом, то при определенной концентрации возникает взрывоопасная смесь. Такое состояние веществ считается критичным, что ограничивает человека в создании мощнейших станций домашнего типа.

Как устроена водородная горелка?

Для создания своими руками генераторов, работающих на водороде, чаще всего в качестве основы используется классическая схема установки Брауна. Электролизер такого типа обладает средней мощностью и включает в себя несколько групп ячеек, каждая из которых, в свою очередь, обладает группой пластичных электродов. Мощность созданной установки будет зависеть от общей площади поверхности пластичных электродов.

Ячейки устанавливаются в емкость, которая качественно защищена от внешних факторов. На корпусе устройства фиксируются специальные патрубки для подключения водяной магистрали, вывода водорода, а также контактная панель, осуществляющую роль подводки электрического тока.

Созданная своими руками водородная горелка по схеме Брауна, помимо всего перечисленного, включает в себя отдельный водяной затвор и обратный клапан. С помощью таких деталей достигается полная защита устройства от выхода водорода. Именно эту схему используют многие мастера при создании водородной установки для отопления домашнего участка.

Отопление дома водородом

Создать кислородно-водородную горелку своими руками не так просто, это требует определенных усилий и терпения. Чтобы собрать нужное количество водорода для отопления дома, нужно воспользоваться мощной электролизной установкой, а также запастись огромным количеством электрической энергии.

Специалисты отмечают, что компенсировать затраченное электричество посредством использования готовой установки в домашних условиях получится нескоро.

Водородная станция для использования в домашних условиях

Как сделать водородную горелку своими руками? Этот вопрос продолжает оставаться самым популярным у владельцев частных домов, которые стараются изготовить надежный и качественный источник отопления. Самым распространенным способом создания такого устройства считается следующий вариант:

  • предварительно подготавливают герметичную емкость;
  • создаются пластинные либо трубчатые электроды;
  • планируется конструкция прибора: способ управления им и оснащение током;
  • подготавливаются дополнительные модули для подключения к устройству;
  • покупаются специальные детали (крепежи, шланги, проводка).

Конечно же, мастеру в обязательном порядке потребуются инструменты, включая специальные устройства, частотомер либо осциллограф. Как только все инструменты и материалы будут подготовлены, мастер может перейти к самому созданию водородно-отопительной горелки для домашнего использования.

Схема создания устройства

На первом этапе создания водородной горелки для отопления дома мастеру нужно проделать специальные ячейки, предназначенные для генерации водорода. Топливная ячейка отличается своей укомплектованностью (немного меньше длины и ширины корпуса генератора), поэтому не займет слишком много места. Высота блока с электродами внутри доходит до 2/3 высота главного корпуса, в который устанавливаются основные детали конструкции.

Ячейку можно создать из оргстекла либо текстолита (толщина стенки варьируется от 5 до 7 миллиметров). Для этого текстолитовая пластина разрезается на пять равных частей. Далее из них формируют прямоугольник и склеивают границы эпоксидным клеем. Нижняя часть полученной фигуры должна оставаться открытой.

Из таких пластин принято создавать корпус топливной ячейки водородного отопителя. Но в этом случае специалисты применяют немного другой способ сборки с использованием винтов.

На внешней стороне готового прямоугольника высверливают небольшие отверстия, предназначенные для проведения электродных пластин, а также одно маленькое отверстие для датчика уровня. Для комфортного высвобождения водорода потребуется дополнительное отверстие шириной от 10 до 15 миллиметров.

Внутрь вставляются платины электродов, контактные хвостики которых проводят через высверленные отверстия на верхней части прямоугольника. Далее встраивается датчик уровня воды на отметке 80 процентов заполнения ячейки. Все свободные отверстия в текстолитовой пластине (исключая то, из которого будет выходить водород) заливаются эпоксидным клеем.

Ячейки генератора

Чаще всего при создании водородного генератора используют цилиндрическую форму исполнения модулей. Электроды в такой конструкции выполнены немного по другой схеме.

Отверстие, из которого выходит водород, должно быть дополнительно оборудовано специальным штуцером. Его фиксируют креплением либо вклеивают. Готовая ячейка генерации водорода встраивается в корпус отопительного прибора и заделывается со стороны верха (в этом случае можно также использовать эпоксидную смолу).

Корпус прибора

Корпус водородного генератора для использования в домашних условиях выполняется довольно просто. Но использовать такую конструкцию для станций высокой мощности не получится, так как он просто не выдержит оказываемой нагрузки.

Перед тем как установить внутрь готовую ячейку, корпус следует хорошо подготовить. Для этого нужно:

  • создать подвод жидкости в нижней части корпуса;
  • сделать верхнюю крышку, оснащенную удобным и надежным крепежом;
  • выбрать хороший уплотнительный материал;
  • установить на крышку электрический клеммник;
  • оснастить крышку водородным коллектором.

Финальный этап

В конце работы мастер сможет получить качественный и надежный водородный генератор для отопительной системы частного дома. Далее останутся лишь финальные штрихи:

  • установить готовую топливную ячейку в главный корпус устройства;
  • подключить электроды к клеммнику крышки прибора;
  • штурец, установленный на отверстии выхода водорода, следует подсоединить к водородному коллектору;
  • крышка накладывается сверху на корпус устройства и фиксируется через уплотнитель.

Теперь водородный генератор полностью готов к работе. Владелец частного дома может смело подключать воду и дополнительные модули для комфортного обогрева частного дома.

Правила использования устройства

Водородная ювелирная горелка для дома должна обладать дополнительными встроенными модулями. Особо важен модуль подачи воды, который совмещается с датчиком уровня воды, встроенным в сам генератор водорода. Самые простые модели представляют собой водяной насос и контроллер управления. Насос управляется контроллером через сигнал датчика в зависимости от количества жидкости, находящейся в топливной ячейки.

Вспомогательные элементы очень важны для любой конструкции отопления. Без автоматических модулей контроля и защиты генератор на водородной основе использовать запрещено и даже опасно.

Специалисты советуют приобрести специальную систему, регулирующую частоту подаваемого электрического тока и уровня напряжения. Это важно для нормального функционирования рабочих электродов внутри топливной ячейки. Также в модуле должен находиться стабилизатор напряжения и защита от перегрузки током.

Водородный коллектор представляет собой трубку, в которую встроен специальный вентиль, манометр и обратный клапан. От коллектора водород подается в помещение посредством специального обратного клапана.

Манометр и водородный коллектор - очень важные детали в водородном генераторе, с помощью которых осуществляется равномерное распределение газа по помещению и контролируется общий уровень давления.

Любой потребитель должен помнить, что водород остается взрывоопасным газом с высокой температурой сгорания. Именно по этой причине просто взять и наполнить конструкцию отопительного прибора водородом запрещается.

Как определить качество установки?

Самостоятельно создать качественную и безопасную отопительную установку для дома - трудная задача, с которой справляются не все. Например, даже при рассмотрении металла, из которого состоят трубы прибора и электродные пластины, уже можно столкнуться с большим количеством трудностей.

Время службы встроенных электродов напрямую зависит от типа металла и его основных свойств. Конечно же, можно применять ту же нержавейку, но эксплуатация таких деталей будет недолгой. Температура водородной горелки должна быть в районе 5000 К.

Особое значение играют и замеры. Все расчеты следует проводить как можно точнее, учитывая требуемую мощность, качество поступающей воды и другие критерии. Если величина отверстия между электродами не будет совпадать с расчетами, то водородный генератор может и вовсе не запуститься.

​Водородное пламя является хорошей альтернативой пламени ацетиленовому и активно используется для сварки, резки и пайки различных материалов. В отличие от многих традиционных способов водородная сварка почти безопасна, благодаря тому, что продуктом процесса горения в ней выступает пар. Этот способ считается вариантом газопламенной обработки, использующим смеси из кислорода и горючих газов.

Если просто использовать водород как топливо вместо ацетилена, то произойдет покрытие сварочной ванны толстым шлаковым слоем, а получаемый при этом шов будет отличаться тонкостью и пористостью. Чтобы избежать этого, применяют органические соединения, способные связывать кислород. С этой целью используются такие углеводороды, как бензин, бензол, толуол и другие, подогретые до температуры, составляющей 30-80% от температуры кипения. Нужное их количество минимально, поэтому водородная сварка ценой не сильно отличается от прочих способов газопламенной обработки.

Еще одной сложностью данного способа может служить отсутствие достаточно эффективных источников водорода с кислородом. Газовые баллоны обладают повышенной опасностью в эксплуатации, поэтому их применение нецелесообразно. Значительные концентрации водорода способны вызывать обморожения и головокружение с удушьем.

Особенно опасно в водородном пламени то, что его не видно в дневном свете. Для его обнаружения необходимо применение специальных датчиков. Решить проблему надежности источников газов позволяют специальные аппараты, разлагающие воду посредством воздействия электрической энергии на кислород и водород. Эти электролизеры могут производить оба газа одновременно.

Эти легкие и компактные приборы приходят на смену тяжелому газосварочному оборудованию, применяемому при недоступности источников электроэнергии, что особенно удобно для проведения водородной сварки в домашних условиях.

Оборудование для водородной сварки

Водородные сварочные приборы, обладая разной мощностью, работают от обычной электросети. Они оборудуются традиционной ацетиленовой горелкой, через шланг в которую поступает водородно-кислородная смесь. Регулировка температуры их пламени позволяет устанавливать ее в широком диапазоне (600-2600 ºС). Аппараты можно применять как для ручной, так и автоматической сварки. Их эксплуатация не доставляет сложностей благодаря не слишком большой трудоемкости и отсутствию необходимости в перезарядке.

Обладая компактными габаритами, аппаратура при этом может быть достаточно мощной. Она приводится в режим работы за несколько минут в зависимости от температуры в месте проведения сварки и требуемого расхода газов. При владении основными навыками газопламенной обработки выполнение своими руками водородной сварки не составит труда, а производительность процесса с качеством швов будут не хуже, чем при традиционной сварке.

В отличие от традиционной сварки, использующей в виде основного топливного газа ацетилен, сварка с использованием вместо него водорода не только продуктивна, но и экологически безопасна. Сварка с ацетиленом чревата загрязнением атмосферного воздуха токсичными соединениями, в то время как единственным продуктом от процесса горения в водородном оборудовании выступает совсем безвредный пар.

Также абсолютно безопасны эти аппараты при хранении, транспортировке и в эксплуатации. Ими выполняют не только сварку, но и кислородную резку (ручную или машинную), пайку, порошковую наплавку, термоупрочнение и порошковое напыление. Несколько разных режимов позволяют осуществлять работы в большом спектре от соединения материалов с минимальной толщиной до резки толстолистных сталей. Несмотря на небольшие размеры этих переносных приборов и малую мощность, они позволяют сварку и резку изделий с толщинами до 2 мм как из черных, так и цветных металлов.

Применение водородной сварки

Кислородно-водородная сварка, топливным газом в которой служит водород, широко применяется в изготовлении ювелирных изделий, используется в стоматологии и при ремонте холодильного оборудования. Различные модели водородных аппаратов популярны в сервисных центрах по обслуживанию техники и других закрытых помещениях, где запрещается эксплуатация взрывоопасных кислородных и пропановых баллонов.

Также к преимуществам применения кислородно-водородного пламени стоит отнести сокращение затрат по обслуживанию рабочих мест при соблюдении норм пожарной безопасности и промышленной санитарии за счет полного отсутствия отходов в производстве и абсолютной безвредности продукта горения - водяного пара. Для беспрерывной работы водородно-кислородных приборов требуется только незначительный объем воды. А спектр обрабатываемых ими материалов довольно широк и включает как черные, цветные, благородные металлы со сталями, так и керамику со стеклом.

Представляющая собой электрохимический подвид сварки плавлением, атомно-водородная сварка, происходящая от действия электродуги с водородом, хорошо подходит для соединения чугунных деталей и конструкций из легированных и низкоуглеродистых сталей. Но ее применение в промышленности ограничивается довольно высоким напряжением источников питания, представляющим опасность для жизни людей.

Кроме того, этим способом сварки нельзя пользоваться при работе с медью, латунью, цинком, титаном и рядом других химических элементов, обладающих повышенной активностью во взаимодействии с водородом. При этом высокая активность молекулярного водорода эффективно защищает металлический расплав от негативного атмосферного влияния.

Технология сварки и резки с помощью водорода, в отличие от ацетиленовой или пропановой, позволяет получать довольно чистый срез. Помимо этого в ней отсутствуют вредные выбросы азотной окиси и грата, а металл не поглощает углерод и закаливается.

Водородные сварочные аппараты целесообразно применять при работах, производимых в тоннелях, колодцах и других труднодоступных местах, где запрещается размещение баллонов с пропаном или ацетиленом. Отдельные виды водородного сварочного оборудования позволяют осуществлять сварку даже при отрицательных температурах.

Условиях. Представленное устройство не имеет накопительных баллонов для газа, что делает его довольно безопасным в эксплуатации. Водород производится методом электролиза, и вырабатывается из обычной воды. Газ, производимый в необходимых количествах ННО генератором, тут же сжигается в горелке, что исключает возможность его накапливания и взрыва.

Необходимые материалы для постройки горелки:
- Пластины из нержавейки, примерно 1 мм толщиной;
- Два болта М6х150 с шайбами и гайками;
- Кусок прозрачной трубки;
(В проекте использовалась трубка из водяного уровня)
- Штуцера с «елочкой»;
(их диаметр подбирается под шланг с водяного уровня)
- Пластиковый контейнер на полтора литра;
(подойдет обычный контейнер для хранения пищи)
- Фильтр проточной очистки;
(можно использовать фильтр стиральной машинки)
- Обратный водный клапан.

Инструменты используются стандартные, которые имеются в каждой мастерской.

Первым шагом будет создание сердца ННО генератора – электролизер. Он выполнен из листов нержавеющей стали, расположенных последовательно друг за другом через равные промежутки и скрепленных болтами.

Как говорится в источнике, марка нержавеющей стали нужна либо зарубежная AISI316L, ее отечественный аналог 03X16H15M3. Но это в идеале, в принципе можно использовать любую.

Почему используется именно нержавеющая сталь, а не к примеру обычный черный метал, ведь он тоже проводит ток? Дело в том что, во первых черный метал ржавеет в воде, во вторых в воду при работе аппарата будет добавляться щелочь, что при условии прохождения электрического тока будет создавать для пластин достаточно агрессивную среду, в которой обычное железо просто долго не протянет.

Из листа нержавейки нужно вырезать 16 квадратных пластин. По размеру они должны быть такими, чтобы свободно входили в пластиковый контейнер. Резать их можно болгаркой или лобзиком.

После этого, в каждой пластине просверливается по два отверстия, диаметром 6 мм, под болты. С противоположной стороны нужно спилить часть уголка.
Вот что должно получится:

Теперь еще немного теории. Принцип работы водородного генератора основывается на том, что при прохождении постоянного электрического тока через электролит между пластинами, ток расщепляет воду на ее составляющие: кислород и водород.

Из этого следует, что из пластин будут собраны две электрически изолированных друг от друга батареи, на одну из которых будет поступать плюс, на другую минус (анод и катод).

Вот как это выглядит схематически:

Такое количество пластин нужно для того, чтобы повысить площадь электрического воздействия на электролит, тем самым увеличив ток, проходящий через электролит, и как следствие количество вырабатываемого водорода.

Существует довольно много вариантов подключения пластин, и данный вариант не является самым оптимальным. Он используется, потому что является довольно простым в изготовлении и коммутации.

Данная схема рассчитана на малое напряжение и большой ток.

Для изоляции пластин друг от друга были использованы кусочки прозрачной трубки:

Толщина кольца должна равняться приблизительно 1 мм.

Скрепляются пластины так: на болт одевается шайба, затем пластина, затем три шайбы, пластина, три шайбы и т.д. Так собираются анод и катод, по 8 пластин.


Затем одна батарея вставляется в другую, развернувшись на 180 градусов. Между пластинами в качестве диэлектрика вставляются вырезанные ранее кусочки трубки.

После сборки две батареи прозваниваются между собой, и если нет короткого замыкания, устанавливаются в контейнер.

В контейнере просверливаются отверстия под болты, на них будет поступать напряжение.

В крышке контейнера просверливается отверстие под штуцер. Перед установкой самого штуцера, его посадочное место лучше промазать герметиком или силиконом. То же самое касается и прилегающей поверхности крышки. Чтобы проверить контейнер на герметичность его можно опустить в емкость с водой. Если на нем появятся пузырьки, значит контейнер не герметичный.

Для повышения генерации газа, в воду необходимо добавить некоторые примеси. Лучше всего подойдет гидроксид натрия, который содержится в средствах для прочистки труб от засоров.

Я давний подписчик вашего журнала, многое использую из напечатанного в нем. Особенно мне понравилась статья «Огонь… из воды», напечатанная в «М-К» № 7, 1980. По описанию изготовил электролизёр, и он стал необходимым инструментом в моей мастерской.

Однако вскоре конструкция вызвала разочарование. Большая (20 кг) масса электролизёра, почти такая же - источника питания, недостаточная для некоторых работ производительность, быстрый нагрев при работе, наличие напряжения на неизолированных электродах, постоянные протечки электролита через стыки, вспенивание и выброс электролита в затвор и горелку, быстрое растворение электродов - все эти недостатки нужно было устранять.

В результате появилась конструкция, избавленная от перечисленных недостатков. Предлагаемый электролизёр работает уже много лет без нареканий. Конструкция его достаточно проста, а многократное облегчение достигнуто за счёт уменьшения расхода материалов (кроме электролита).

Аппарат понравился многим моим друзьям и знакомым, изготовлено ещё несколько экземпляров (названных в шутку «плазмотронами»: название прижилось - наверное потому, что легче выговаривать) различной производительности - от 200 до 500 л/ч газовой смеси. Просьбы помочь в изготовлении электролизёра продолжаются, и я решил написать в ваш журнал.

Устройство электролизёра

Основная часть электролизёра - корпус 1 (рис.1), футерованный внутри диэлектриком 2; в нём установлены внутренние электроды 5, отделённые один от другого резиновыми кольцами 12. По концам корпуса установлены фланцы 3 с концевыми электродами 6, герметичными токоподводами 7 и штуцерами 4. Прозрачные фланцы 3 (из оргстекла) и прорези по краям концевых электродов 6 служат для визуального контроля уровня электролита и процесса электролиза.

Электроды изготовлены из нержавею

modelist-konstruktor.com

Водяная горелка - миниатюрный автоген

Используется принцип получения водорода с помощью электролиза водного раствора щелочи. Благодаря малым наружным габаритам электролизера ему найдется место и на небольшом рабочем столе, а использование в качестве блока электропитания стандартного выпрямителя для подзарядки аккумуляторных батарей облегчает изготовление установки и делает работу с ней безопасной.

Относительно небольшая, но вполне достаточная для нужд моделиста производительность аппарата позволила предельно упростить конструкцию водяного затвора и гарантировать пожара - и взрывобезопасность.

Устройство электролизера

Между двумя платами, соединенными четырьмя шпильками, размещена батарея стальных пластин-электродов, разделенных резиновыми кольцами. Внутренняя полость батареи наполовину заполнена водным раствором КОН или NaOH.

Приложенное к пластинам постоянное напряжение вызывает электролиз воды и выделение газообразного водорода и кислорода.

Эта смесь отводится через надетую на штуцер полихлорвиниловую трубку в промежуточную емкость, а из нее в водяной затвор. Газ, прошедший через помещенную там смесь воды с ацетоном в соотношении 1:1, имеет необходимый для горения состав и, отведенный другой трубкой в форсунку - иглу от медицинского шприца, сгорает у ее выходного отверстия с температурой около 1800° С.

Состав электролизера:

1 - изолирующая полихлорвиниловая трубка 10 мм, 2 - шпилька М8 (4 шт.), 3 - гайка М8 с шайбой (4 шт.), 4- левая плата, 5 - пробка-болт М10 с шайбой, б - плас-. тина, 7 - резиновое кольцо, 8 - штуцер, 9 - шайба, 10 -полихлорвиниловая трубка 5 мм, 11 - правая плата, 12 - короткий штуцер (3 шт.), 13 - промежуточная емкость, 14 - основание, 15 - клеммы, 16 - барботажная трубка, 17 - форсунка-игла, 18 - корпус водяного затвора.

Для плат электролизера я использовал толстое оргстекло. Этот материал легко обрабатывается, химически стоек к действию электролита и позволяет визуально контролировать его уровень, чтобы при необходимости добавлять через наливное отверстие дистиллированную воду.

Пластины можно изготовить из листового металла (нержавеющая сталь, никель, декапированное или трансформаторное железо) толщиной 0,6-0,8 мм. Для удобства сборки в пластинах выдавлены круглые углубления под резиновые кольца уплотнения, глубина их при толщине кольца 5-6 мм должна быть 2-3 мм.

Изоляции пластин, вырезаются из листовой маслобензостойкой или кислотоупорной резины. Сделать это вручную несложно, и все же идеальный для этого инструмент - “кругорез-универсал”.

Четыре стальные шпильки М8, соединяющие детали, изолированы кембриком диаметром 10 мм и пропущены в соответствующие отверстия диаметром 11 мм.

Количество пластин в батарее - 9. Оно определяется параметрами блока электропитания: его мощностью и максимальным напряжением - из расчета 2В на пластину.

Потребляемый ток зависит от количества задействованных пластин (чем их меньше, тем ток больше) и от концентрации раствора щелочи. В более концентрированном растворе ток больше, но лучше применять 4-8-процентный раствор - при электролизе он не так пенится.

Контактные клеммы припаиваются к первой и трем последним пластинам. Стандартное зарядное устройство для автомобильных аккумуляторов ВА-2, подключенное на 8 пластин, при напряжении 17 В и токе около 5А обеспечивает необходимую производительность горючей смеси для форсунки - иглы с внутренним диаметром 0,6 мм.

Оптимальное соотношение диаметра иглы форсунки и производительности электролизера устанавливается опытным путем - так, чтобы зона воспламенения смеси располагалась вне иглы. Если производительность мала или диаметр отверстия слишком велик, горение начнется в самой игле, которая от этого быстро разогреется и оплавится.

Надежным заслоном от распространения пламени по подводящей трубке внутрь электролизера является простейший водяной затвор, который сделан из двух порожних баллончиков для заправки газовых зажигалок. Достоинства их те же, что и у материала плат: легкость механической обработки, химическая стойкость и полупрозрачность, позволяющая контролировать уровень жидкости в водяном затворе.

Промежуточная емкость исключает возможность смешивания электролита и состава водяного затвора в режимах интенсивной работы или под действием разряжения, возникающего при выключении электропитания. А чтобы этого избежать наверняка, по окончании работы следует сразу же отсоединять трубку от электролизера.

Штуцеры емкостей сделаны из медных трубок диаметром 4 и 6 мм, устанавливаются в верхней стенке баллончиков на резьбе. Через них же осуществляется заливка состава водяного затвора и слив конденсата из разделительной емкости. Отличная воронка для этого получится из еще одного пустого баллончика, разрезанного пополам и с установленной на месте клапана тонкой трубкой.

Соедините короткой полихлорвиниловой трубкой диаметром 5 мм электролизер с промежуточной емкостью, последнюю - с водяным затвором, а его выходной штуцер более длинной трубкой - с форсункой-иглой.

Включите выпрямитель, подрегулируйте напряжением или количеством подключаемых пластин номинальный ток и подожгите выходящий из форсунки газ.

Если вам необходима большая производительность - увеличьте количество пластин и примените более мощный блок питания - с ЛАТРом и простейшим выпрямителем.

Температура пламени также поддается некоторой корректировке составом водяного затвора. Когда в нем только вода, в смеси содержится много кислорода, что в некоторых случаях нежелательно.

О том, как сделать метиловый спирт в домашних условиях, мы описали в этой статье.

Залив в водяной затвор метиловый спирт, смесь можно обогатить и поднять температуру до 2600°С.

Для снижения температуры пламени водяной затвор заполняют смесью ацетона и воды в соотношении 1:1. Однако в последних случаях следует не забывать пополнять и содержимое водяного затвора.

electro-shema.ru

Газосварка | Мастер-класс своими руками

Ювелирный газосварочный аппарат на обычной воде. Водород при смеси с воздухом образует взрывоопасную смесь - так называемый гремучий газ. Температура горения водорода 2800 град. Цельсия. Именно на этих фактах и собранны данная газосварка. Основой сварки является электролизер, который заправляется раствором щелочи в воде, т.е. обычной соды (натрий двууглекислый) и генерирует Кислород, и Водород смесь, которая идеально горит. Вот так может выглядеть готовый агрегат:

Итак, начнем со сборки самого электролизера. Нам понадобится: 1. Листовая нержавеющая сталь (нержавейка) 2. Резина или пластик 3. Оргстекло или как его еще называют стеклопластик 4. Болты с гайками 5.Герметик 6. Соединительные штуцера и патрубки Начнем. Для начала нарежем пластины нержавейки

После это в пластинах необходимо высверлить отверстия для циркуляции раствора и прохода газа между отсеками

Теперь нарежем изолирующие пластиковые промежутки лучше изготовить их из резины, но у меня не нашлось её и я использовал пластик и силиконовый герметик

Получилось не очень изящно, главное работоспособно. Осталось вырезать боковые основы из оргстекла и можно начинать сборку. Чтобы отверстия для болтов совпадали, рекомендую положить одно на другое стекла высверлить аккуратно по диагонали два отверстия и закрепить шурупами, так при сверлении стекла не будут съезжать

Теперь можно начинать сборку. Начала на оргстекло мажем герметик и укладываем пластик на пластик ложем нержавейку и так далее промазывая все герметикам в итоге у нас получаются такие отсеки для раствора

Самые крайние пластины нужно отвести так чтобы можно было закрепить контакты.

Из за, мягко говоря ошибки в расчетах два болта не вошли. Перед тем как закрывать верхний отсек в стекле необходимо сделать два отверстия вверху для выхода газа и снизу для поддержки уровя раствора

Нижний патрубок нужно соединить с бутылкой, в которую будет заливаться раствор и по принципу сообщающихся сосудов раствор попадет в отсеки

Затем необходимо изготовить водный затвор. Так как из электролизера выходит гремучий газ пламя может легко пойти по трубке и взорвется это происходит всего за долю секунды. Я таким образом потерял три бутылки по 0.5. И так в пробке делается два отверстия в одну заходит трубка электролизера и погружается в воду. Во второе отверстие вставляется трубка горелки

В качестве горелки используется обычный шприц, а именно игла

Для питания используется очень мощный источник постоянного тока, расчет напряжения 2 вольта на пластину нержавейки, ток не менее 7 А. Ток подается на крайние пластины. Теперь осталось самое простое приготовить раствор. В воду добавляется обычная сода в идеале лучше взять NaOH (едкий натрий, каустическая сода) но её не так просто найти, концентрация соды рассчитывается по амперажу ток должен быть в пределах от 4 до 6 ампер (для обычной соды). Прежде чем собирать установку помните, что водород крайне взрывоопасен достаточно маленькой искры, чтобы вызвать взрыв. Температура горения водорода велика и следовательно не горючие газы входящие в состав воздуха сильно расширяются и происходит очень сильный хлопок по этой причине меня два раза глушило на оба уха и вырвало дно у трех бутылок.

Вот и все можно пользоваться.

Вот что произошло с обычным конденсатором. Тушить горелку лучше опустив в воду, а не выключением питания в этом случае происходит взрыв. Повторюсь что температура горения водорода около 2800 град Цельсия следовательно можно плавить все металлы температура плавления которых ниже, а именно: Литий Калий Натрий Кальций Магний Цезий Алюминий Барий Цинк Хром Марганец Олово Железо Кадмий Никель Медь Висмут Серебро Свинец Вольфрам Золото Платина Осмий

Желающим повторить удачи!

Видео с наглядным объяснением:

sdelaysam-svoimirukami.ru

Водородная сварка - основные отличия от стандартных способов сварки

​Водородное пламя является хорошей альтернативой пламени ацетиленовому и активно используется для сварки, резки и пайки различных материалов. В отличие от многих традиционных способов водородная сварка почти безопасна, благодаря тому, что продуктом процесса горения в ней выступает пар. Этот способ считается вариантом газопламенной обработки, использующим смеси из кислорода и горючих газов.

Если просто использовать водород как топливо вместо ацетилена, то произойдет покрытие сварочной ванны толстым шлаковым слоем, а получаемый при этом шов будет отличаться тонкостью и пористостью. Чтобы избежать этого, применяют органические соединения, способные связывать кислород. С этой целью используются такие углеводороды, как бензин, бензол, толуол и другие, подогретые до температуры, составляющей 30-80% от температуры кипения. Нужное их количество минимально, поэтому водородная сварка ценой не сильно отличается от прочих способов газопламенной обработки.

Еще одной сложностью данного способа может служить отсутствие достаточно эффективных источников водорода с кислородом. Газовые баллоны обладают повышенной опасностью в эксплуатации, поэтому их применение нецелесообразно. Значительные концентрации водорода способны вызывать обморожения и головокружение с удушьем.

Особенно опасно в водородном пламени то, что его не видно в дневном свете. Для его обнаружения необходимо применение специальных датчиков. Решить проблему надежности источников газов позволяют специальные аппараты, разлагающие воду посредством воздействия электрической энергии на кислород и водород. Эти электролизеры могут производить оба газа одновременно.

Эти легкие и компактные приборы приходят на смену тяжелому газосварочному оборудованию, применяемому при недоступности источников электроэнергии, что особенно удобно для проведения водородной сварки в домашних условиях.

Оборудование для водородной сварки

Водородные сварочные приборы, обладая разной мощностью, работают от обычной электросети. Они оборудуются традиционной ацетиленовой горелкой, через шланг в которую поступает водородно-кислородная смесь. Регулировка температуры их пламени позволяет устанавливать ее в широком диапазоне (600-2600 ºС). Аппараты можно применять как для ручной, так и автоматической сварки. Их эксплуатация не доставляет сложностей благодаря не слишком большой трудоемкости и отсутствию необходимости в перезарядке.

Обладая компактными габаритами, аппаратура при этом может быть достаточно мощной. Она приводится в режим работы за несколько минут в зависимости от температуры в месте проведения сварки и требуемого расхода газов. При владении основными навыками газопламенной обработки выполнение своими руками водородной сварки не составит труда, а производительность процесса с качеством швов будут не хуже, чем при традиционной сварке.

В отличие от традиционной сварки, использующей в виде основного топливного газа ацетилен, сварка с использованием вместо него водорода не только продуктивна, но и экологически безопасна. Сварка с ацетиленом чревата загрязнением атмосферного воздуха токсичными соединениями, в то время как единственным продуктом от процесса горения в водородном оборудовании выступает совсем безвредный пар.

Также абсолютно безопасны эти аппараты при хранении, транспортировке и в эксплуатации. Ими выполняют не только сварку, но и кислородную резку (ручную или машинную), пайку, порошковую наплавку, термоупрочнение и порошковое напыление. Несколько разных режимов позволяют осуществлять работы в большом спектре от соединения материалов с минимальной толщиной до резки толстолистных сталей. Несмотря на небольшие размеры этих переносных приборов и малую мощность, они позволяют сварку и резку изделий с толщинами до 2 мм как из черных, так и цветных металлов.

Применение водородной сварки

Кислородно-водородная сварка, топливным газом в которой служит водород, широко применяется в изготовлении ювелирных изделий, используется в стоматологии и при ремонте холодильного оборудования. Различные модели водородных аппаратов популярны в сервисных центрах по обслуживанию техники и других закрытых помещениях, где запрещается эксплуатация взрывоопасных кислородных и пропановых баллонов.

Также к преимуществам применения кислородно-водородного пламени стоит отнести сокращение затрат по обслуживанию рабочих мест при соблюдении норм пожарной безопасности и промышленной санитарии за счет полного отсутствия отходов в производстве и абсолютной безвредности продукта горения – водяного пара. Для беспрерывной работы водородно-кислородных приборов требуется только незначительный объем воды. А спектр обрабатываемых ими материалов довольно широк и включает как черные, цветные, благородные металлы со сталями, так и керамику со стеклом.

Представляющая собой электрохимический подвид сварки плавлением, атомно-водородная сварка, происходящая от действия электродуги с водородом, хорошо подходит для соединения чугунных деталей и конструкций из легированных и низкоуглеродистых сталей. Но ее применение в промышленности ограничивается довольно высоким напряжением источников питания, представляющим опасность для жизни людей.

Кроме того, этим способом сварки нельзя пользоваться при работе с медью, латунью, цинком, титаном и рядом других химических элементов, обладающих повышенной активностью во взаимодействии с водородом. При этом высокая активность молекулярного водорода эффективно защищает металлический расплав от негативного атмосферного влияния.

Технология сварки и резки с помощью водорода, в отличие от ацетиленовой или пропановой, позволяет получать довольно чистый срез. Помимо этого в ней отсутствуют вредные выбросы азотной окиси и грата, а металл не поглощает углерод и закаливается.

Водородные сварочные аппараты целесообразно применять при работах, производимых в тоннелях, колодцах и других труднодоступных местах, где запрещается размещение баллонов с пропаном или ацетиленом. Отдельные виды водородного сварочного оборудования позволяют осуществлять сварку даже при отрицательных температурах.

promplace.ru

Сварочный аппарат водородный: зачем нужно подобное оборудование?

Сварочный аппарат – устройство, без участия которого при строительстве, на производстве или в быту задача скрепления металлических деталей будет практически неосуществима. Водородный аппарат для производства сварочных работ – оборудование, достойное внимания, а поэтому постараемся рассмотреть все его полезные качества.

Описание и характеристики водородного аппарата

Водородный аппарат предназначен для резки, пайки и сварки металлов, при этом материалы могут быть цветными и черными. Особенностью такого приспособления является то, что им можно обрабатывать стекло, пластик, кварц и оргстекло. Водородный аппарат послужит отличным помощником в ювелирном деле, в стоматологических целях, на станциях технического обслуживания. Такой сварочный аппарат пригодится в отраслях, где необходим высокотемпературный локальный нагрев.

Сварочный аппарат функционирует на водороде, вырабатываемом внутри устройства. Заполучить водород выходит благодаря расщеплению молекул воды на атомы кислорода и водорода, при этом образуя газовую смесь с высокой потенциальной энергией, используемой для соединительных работ. Для продуктивного функционирования данного оборудования понадобится полтора литра воды (дистиллированной), а также доступ к бытовой электрической сети (220В).

Технические характеристики:

  • Питающая сеть – 220В;
  • Потребляемая мощность – до 2 кВт;
  • Производительность газа – до 480л/час;
  • Расход дистиллированной воды – 150 мл./час.

Преимущества:

  • Стабильное давление;
  • Сварочный аппарат имеет значительную производительность при незначительных габаритах;
  • Специализированная технология производства пластин обеспечивает существенный ресурс работы;
  • Различные режимы функционирования;
  • Удобство применения;
  • Удобное управление мощностью;
  • Долговечность, а также простота обслуживания;
  • Широкий спектр использования;
  • Высокое качество и стабильность наряду с незначительной стоимостью;
  • Применение ШИМ дает возможность снизить энергетические затраты, снизить массу оборудования;
  • Эффективность и удобство при сравнении с газосварочными баллонами;
  • Возможность эксплуатации одного оборудования на нескольких рабочих местах одновременно;
  • Универсальность.
к меню

Как сделать оборудования своими руками?

Водород, как известно, во время смешивания с воздухом способствует созданию взрывоопасной смеси – так называемого, гремучего газа. Температура горения водорода составляет 2800 градусов Цельсия. Целесообразно разобраться в собственноручном производстве такого полезного оборудования, как сварочный аппарат. Постараемся рассмотреть порядок работы и применяемые материалы с инструментами.

Инструменты и материалы:

  • Листовая нержавеющая сталь;
  • Болты с гайками;
  • Оргстекло, либо стеклопластик;
  • Резина или пластик;
  • Герметик;
  • Соединительные штуцера, а также патрубки.

Порядок работы:

  1. Начинать своими руками собирать качественный сварочный аппарат следует со сборки электролизера, а поэтому, сначала нарежьте пластины нержавеющей стали;
  2. Далее в пластинах стоит высверлить отверстия, предназначенные для циркуляции раствора, прохода газа между отсеками;
  3. Следующим образом понадобится нарезать изолирующие пластиковые промежутки, но лучше будет выполнить их из резины;
  4. Теперь нужно вырезать своими руками боковые основы из вышеупомянутого материала – оргстекла, после чего можно приступать к сворке оборудования. Для того чтобы для болтов отверстия совпадали, желательно положить одно стекло на другое, после чего высверлить аккуратно по диагонали два отверстия. Далее надо зафиксировать их шурупами;
  5. Начинаем собирать сварочный аппарат. На оргстекло следует нанести герметик, уложить пластик на пластик, кладем нержавейку, после чего промазываем герметиком;
  6. Наиболее крайние пластины потребуется отвести таким образом, чтобы можно было зафиксировать контакты;
  7. Прежде чем как закрывать верхний отсек в стекле, надо выполнить пару отверстий своими руками вверху для выхода газа, а также для поддержки уровня раствора снизу;
  8. Нижний патрубок понадобится соединить с бутылкой, в которую будет заливаться раствор. Таким образом, раствор будет попадать в отсеки;
  9. Теперь можно приступать к производству водного затвора. Таким образом, в пробке выполняем два отверстия, при этом стоит знать, что в одну будет входить трубка электролизера и загружается в воду. Второе отверстие служит для трубки горелки;
  10. Роль горелки может исполнить обыкновенный шприц, то есть игла;
  11. Для питания можно использовать мощный источник постоянного тока, расчет напряжения – 2В на пластину нержавеющей стали. То должен приравниваться не менее 7 А, при этом рабочий параметр подается на крайние пластины;
  12. В конце можно будет сделать самое главное – приготовить раствор, для чего добавим обычную пищевую соду. Концентрация воды должна рассчитываться по амперажу ток должен находиться в пределах 4-6А.

Изучив определенные шаги изготовления устройства, произвести сварочный аппарат, который будет эксплуатироваться при помощи водорода, и в будущем послужит отличную и долговечную службу.

Похожие статьи

goodsvarka.ru

Атомно-водородная сварка | Сварка и сварщик

Атомно-водородная сварка. Плавление металла происходит за счет тепла, выделяемого при превращении атомарного водорода в молекулярный водород, и за счет тепла независимой дуги, горящей между двумя вольфрамовыми электродами.

1 - электроды; 2 - мундштуки горелки; 3 - зона превращения атомарного водорода в молекулярный; 4 - молекулярный водород, поступающий из мундштуков; 5 - зона диссоциации водорода на атомарныйСхема процесса атомно-водородной сварки

Атомно-водородная сварка была изобретена в 1925 г. американцем Лангмюром.

Во время нагревания водорода при соприкосновении его с раскаленной вольфрамовой нитью лампочки, как это имело место в первых исследованиях Лангмюра, происходит диссоциация молекул водорода на атомы.

Особенно интенсивную диссоциацию (61-62% всего нагретого водорода) Лангмюру удалось получить в вольтовой дуге, образованной в атмосфере водорода между двумя вольфрамовыми электродами. Атомное состояние водорода неустойчивое, оно длится доли секунды. Воссоединение атомов в молекулы сопровождается выделением тепла, которое было поглощено при диссоциации.>

Тепловой эффект от излучения дуги и от сгорания молекулярного водорода в наружной зоне пламени незначителен по сравнению с эффектом рекомбинации атомов водорода.

Температура атомно-водородного пламени составляет ~ 3700° С, что по концентрации тепла приближает этот способ сварки к сварке в среде защитных газов. Водород при этом способе сварки передает тепло от дуги к изделию вначале за счет поглощения его при реакции диссоциации, а затем путем выделения при рекомбинации атомов водорода. Высокая активность водорода обеспечивает хорошую защиту металла шва от вредного воздействия кислорода и азота воздуха.

При атомно-водородной сварке дуга горит между двумя вольфрамовыми электродами, расположенными под углом. В зону дуги можно подавать чистый водород или азотно-водородные смеси, получаемые при диссоциации аммиака. Питание дуги осуществляется от источников переменного тока. Из-за высокого охлаждающего действия реакции диссоциации водорода и высокого потенциала ионизации водорода напряжение источника питания дуги, требуемое для ее зажигания, должно быть 250-300 В. Напряжение горения дуги 60-120 В. Сила тока дуги 10-80 А.

Широкий диапазон изменения напряжения горения дуги мало сказывается на величине изменения силы тока. Напряжение горения дуги зависит от расхода водорода и расстояния между вольфрамовыми электродами.

Зажигание дуги осуществляется коротким замыканием вольфрамовых электродов, обдуваемых водородом, или, лучше, замыканием электродов на угольную (или графитовую) пластинку при обдувании струей газа, так как в этом случае обеспечивается легкое зажигание дуги и не требуется повышенного напряжения холостого хода источника питания. После зажигания дуги расстояние от концов электродов до поверхности изделия устанавливают в пределах 4-10 мм. Это зависит от мощности атомно-водородного пламени и толщины свариваемого металла.

а - спокойной; б - звенящейФормы дуги

Дуга может быть спокойной (рис. а), когда нет в дуге характерного веера, и звенящей (рис. б), когда веер пламени касается поверхности свариваемого изделия и дуга издает резкий звук. Для спокойной дуги напряжение не превышает 20-50 В и расход водорода 500-800 л/ч, для звенящей дуги - 60-120 В и 900-1800 л/ч соответственно.

При атомно-водородной сварке выполняют следующие виды сварных соединений: стыковые с отбортовкой и без отбортовки кромок, угловые, тавровые и нахлесточные.

Высоту отбортовки принимают равной двойной толщине свариваемого листа. Угловые соединения выполняют с применением присадочной проволоки или без нее. При сварке толщин более 3 мм на стыковых и тавровых соединениях рекомендуется выполнять скос кромок под углом ≥45°.

Обычно атомно-водородную сварку рекомендуется применять для сварки металлов и сплавов толщиной 0,5-5-10 мм. Этим способом хорошо свариваются малоуглеродистая и легированная сталь, чугун, алюминиевые, магниевые сплавы. Хуже свариваются медь, латунь из-за склонности к насыщению водородом и испарению цинка. При сварке алюминия и сплавов на его основе необходимо применить флюсы, состоящие из солей щелочных металлов. Металлы с высокой химической активностью к водороду, например Ti, Zr, Та и др., нецелесообразно сваривать атомно-водородной сваркой.

Атомно-водородная сварка обеспечивает получение сварных соединений со свойствами, близкими к свойствам основного металла.

Техника выполнения швов при атомно-водородной сварке подобна технике газовой сварки, т. е. может быть осуществлена как правым, так и левым методами.

Атомно-водородную сварку можно осуществлять в нижнем и вертикальном положениях, по режимам приведенным в таблице

Режимы (ориентировочные) атомно-водородной сварки

Установка для атомно-водородной сварки состоит из атомно-водородного аппарата, баллона с водородом, водородного редуктора, горелки и пускорегулирующей аппаратуры.

1 - атомно-водородный аппарат; 2 - баллон с водородом; 3 - горелка; 4 - токоподвод; 5 - шланг для подачи водородаСхема установки для атомно-водородной сварки

При горении дуги в смеси водорода и азота в состав установки входит еще баллон с аммиаком, крекер для получения азотно-водородной смеси из аммиака, аммиачный вентиль, водоотделитель и осушитель для газа. Водород с воздухом образует взрывные смеси, поэтому все соединения трубопроводов, вентилей, шлангов должны быть надежными, а помещения, где производится работа, хорошо вентилируемые.

1 - корпус; 2 - сосуд, питающий пост азотно-водородной смесью; 3 - нагреватель; 4 - труба с катализатором; 5 - катализатор; 6 - электродвигатель; I - баллон с аммиаком; II - крекер; III - водоотделитель; IV - азотно-водородный аппаратСхемы крекера (а) и установки (б) для сварки азотно-водородной смесью

При соединении водорода с углеродом в условиях сварочной дуги происходит обезуглероживание металла. Поэтому в производственных условиях вместо чистого водорода применяют смеси водорода с азотом. Для расщепления аммиака на водород и азот используют аппараты-крекеры (см. рис. а), в которых расщепление происходит при 600 °С в присутствии катализатора - железной стружки. Из крекера смесь газов поступает в очиститель (см. рис. б) и далее в осушитель, где азотно-водородная смесь, пройдя слой хлористого кальция, поступает по резиновому шлангу в сварочную горелку.

Технические характеристики аппаратов для атомно-водородной сварки

Известны аппараты для атомно-водородной сварки типа ГЭ-1-2, ГЭ-2-2, АВ-40, АГЭС-75, техническая характеристика которых приведена в таблице.

Атомно-водородная сварка широко применялась в самолетостроении, химическом машиностроении и других отраслях промышленности. В настоящее время из-за значительного прогресса других способов сварки атомно-водородная сварка применяется редко.

weldering.com

Водородная сварка

Сегодня среди всех видов газопламенных обработок все большую популярность получает сварка водородная. Такая газосварочная технология основана прежде всего на процессе электрохимического распада воды на два химических элемента: водород и кислород.


Процедура сварки отличается наибольшей эффективностью и обладает большими преимуществами перед сваркой, где главным элементом выступает соединение кислорода с ацетиленом.

Водородную сварку можно отнести к категории безвредных технологий, так как весь процесс горения основан на единственном элементе - водяном паре. В ходе работы температура горелки может повыситься до 2600°С, а это значит, что данная технология позволит осуществить любую сварку, спаивание или поможет прорезать различные виды черных металлов.

Технология процесса водородной сварки

Так как водородное пламя имеет ряд преимуществ перед ацетиленовым, его чаще используют для прорезания и спайки изделий из металла. Из-за того что в результате горения выделяется водяной пар, такая сварка считается самой безопасной. При использовании в ходе сварки водорода как топливного элемента, на покрытии металла может возникнуть слой шлака большой толщины. Выполняемый при этом сварочный шов будет иметь тонкую толщину и рыхлость. Чтобы избежать этого, в основном используют органические соединения, которые, наоборот, связывают кислород. Для этого лучше применять различные углеводороды (бензин, толуол и др.) и подогревать их до достижения температуры 80% от температуры кипения. При сварке понадобится минимальное количество углеводородов для максимального результата, поэтому она и намного дешевле, чем другая газопламенная обработка.

При использовании водородной сварки не нужно применять газовые баллоны, являющиеся эффективными источниками смеси водорода с кислородом. Дело в том, что они очень опасны при эксплуатации. Когда происходит сварка, водородное пламя совсем не видно при дневном свете. Поэтому для облегчения работы необходимо использовать специальные датчики. Надежность источников газа зависит прежде всего от аппаратов, работа которых возможна при наполненности водой, где с помощью воздействия электроэнергии она распадается на кислород и водород. При помощи таких электролизеров очень просто выполняется электролизная сварка, где в качестве основного элемента соединения деталей используется водородно-кислородная смесь.

В некоторых случаях используется атомно-водородная сварка, представляющая собой электрохимический процесс плавления. Действие достигается в результате нагревания электрической дуги расщепления водорода. По уровню содержания тепла атомно-водородная сварка несколько отличается от ацетиленово-кислородной сварки и других видов сварок. В основном данный вид используется при сварке чугуна или стали. В промышленных предприятиях атомно-водородная сварка применяется в редких случаях по причине высокого напряжения, которое опасно для любого человека.



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные