Как вычитать рациональные числа с разными знаками. Сложение и вычитание рациональных чисел


В этой статье мы разберемся со сложением чисел с разными знаками . Здесь мы приведем правило сложения положительного и отрицательного числа, и рассмотрим примеры применения этого правила при сложении чисел с разными знаками.

Навигация по странице.

Правило сложения чисел с разными знаками

Примеры сложения чисел с разными знаками

Рассмотрим примеры сложения чисел с разными знаками по правилу, разобранному в предыдущем пункте. Начнем с простого примера.

Пример.

Сложите числа −5 и 2 .

Решение.

Нам нужно сложить числа с разными знаками. Выполним все шаги, предписанные правилом сложения положительного и отрицательного числа.

Сначала находим модули слагаемых, они равны 5 и 2 соответственно.

Модуль числа −5 больше, чем модуль числа 2 , поэтому запоминаем знак минус.

Осталось поставить запомненный знак минус перед полученным числом, получаем −3 . На этом сложение чисел с разными знаками завершено.

Ответ:

(−5)+2=−3 .

Чтобы сложить рациональные числа с разными знаками, которые не являются целыми, их следует представить в виде обыкновенных дробей (можно работать и с десятичными дробями , если это удобно). Разберем этот момент при решении следующего примера.

Пример.

Сложите положительное число и отрицательное число −1,25 .

Решение.

Представим числа в виде обыкновенных дробей, для этого выполним переход от смешанного числа к неправильной дроби : , и переведем десятичную дробь в обыкновенную : .

Теперь можно воспользоваться правилом сложения чисел с разными знаками.

Модули складываемых чисел равны 17/8 и 5/4 . Для удобства выполнения дальнейших действий, приведем дроби к общему знаменателю , в результате имеем 17/8 и 10/8 .

Сейчас нам нужно выполнить сравнение обыкновенных дробей 17/8 и 10/8 . Так как 17>10 , то . Таким образом, слагаемое со знаком плюс имеет больший модуль, поэтому, запоминаем знак плюс.

Теперь из большего модуля вычитаем меньший, то есть, выполняем вычитание дробей с одинаковыми знаменателями : .

Осталось перед полученным числом поставить запомненный знак плюс, получаем , но - это есть число 7/8 .

СЛОЖЕНИЕ И ВЫЧИТАНИЕ

чисел с разными знаками

Добиться того, чтобы ученик за меньшее, чем прежде, время овладел большим объемом знаний, основательных и действенных - такова одна из главных задач современной педагогики. В этой связи появляется необходимость начинать изучение нового через повторение старого, уже изученного, известного по данной теме материала. Чтобы повторение проходило быстро и для того, чтобы была наиболее наглядной связь нового со старым, надо при объяснении организовать запись изучаемого материала специальным образом.

В качестве примера расскажу о том, как я обучаю учеников сложению и вычитанию чисел с разными знаками с помощью координатной прямой. Перед изучением темы непосредственно и на протяжении уроков в 5-м и 6-м классах уделяю много внимания устройству координатной прямой. До начала изучения темы «Сложение и вычитание чисел с разными знаками» необходимо, чтобы каждый ученик твердо знал и умел ответить на следующие вопросы:

1) Как устроена координатная прямая?

2) Как располагаются на ней числа?

3) Чему равно расстояние от числа 0 до любого числа?

Учащиеся должны понимать, что движение вдоль прямой вправо приводит к увеличению числа, т.е. выполняется действие сложения, а влево - к его уменьшению, т.е. выполняется действие вычитания чисел. Чтобы работа с координатной прямой не вызывала скуки, существует много игровых нестандартных задач. Например, такая.

Вдоль шоссе начерчена прямая. Длина одного единичного отрезка равна 2 м. все двигаются только вдоль прямой. На числе 3 стоят Гена и Чебурашка. Они одновременно пошли в разные стороны и одновременно остановились. Гена прошел в 2 раза большее расстояние, чем Чебурашка, и оказался на числе 11. На каком числе оказался Чебурашка? Сколько Чебурашка прошел метров? Кто из них шел медленнее и во сколько раз? (Нестандартная математика в школе. - М., Лайда, 1993, № 62).

Когда я твердо уверена, что все ученики справляются с движениями вдоль прямой, а это очень важно, перехожу непосредственно к обучению сложению и вычитанию чисел одновременно.

Каждому учащемуся выдается опорный конспект. Разбирая положения конспекта и опираясь на уже имеющиеся геометрические наглядные картинки координатной прямой, учащиеся получают новые знания. (Конспект приведен на рисунке). Изучение темы начинается с записи в тетради вопросов, которые будут рассмотрены.

1 . Как выполнить сложение с помощью координатной прямой? Как найти неизвестное слагаемое? Рассматриваем соответствующую часть конспекта??. Вспоминаем, что к a прибавить b - это значит увеличить a на b и движение вдоль координатной прямой происходит вправо. Вспоминаем, как называются и вычисляются компоненты при сложении и законы сложения, а также свойства нуля при сложении. Это части?? и?? конспекта. Поэтому следующие вопросы, записанные в тетради, таковы:

1). Сложение - это движение вправо.

СЛ. + СЛ. = С; СЛ. = С - СЛ.

2). Законы сложения:

1) переместительный закон: a + b = b + a ;

2) сочетательный закон: (a + b ) + c = a + (b + c ) = (a + c ) + b

3). Свойства нуля при сложении: a + 0= a ; 0+ a = a ; a + (- a ) = 0.

4). Вычитание - это движение влево.

У. - В. = Р.; У. = В. + Р.; В. = У. - Р.

5). Сложение можно заменить вычитанием, а вычитание - сложением.

4 + 3 = - 1 3 - 4 = -1

4 + 3 = 3 + (- 4) = 3 - 4 = - 1

по переместительному закону сложения

6). Так раскрывают скобки:

+ (a + b + c ) = + a + b + c

«джентельмен»

- (a + b + c) = - a - b - c

«разбойник»

2 . Законы сложения.

3 . Перечислите свойства нуля при сложении.

4 . Как выполнить с помощью координатной прямой вычитание чисел? Правила нахождения неизвестных вычитаемого, уменьшаемого.

5 . Как выполняется переход от сложения к вычитанию и от вычитания к сложению?

6 . Как раскрыть скобки, перед которыми стоит: а) знак плюс; б) знак минус?

Теоретический материал довольно объемен, но так как каждая его часть связана и как бы «вытекает» одна из другой, запоминание происходит успешно. Работа с конспектом на этом не заканчивается. С каждой частью конспекта соотносится текст учебника, который прочитывается в классе. Если после этого ученик считает, что разбираемая часть ему полностью понятна, то он слегка закрашивает текст конспекта в соответствующую рамочку, как бы говоря: «Это я понял». Если же есть что-то непонятное, то рамочка не закрашивается до тех пор, пока не станет все ясно. Белая часть конспекта - сигнал «Разберись!»

Цель учителя, которую следует достичь к концу урока, такова: учащиеся, уходя с урока, должны помнить, что сложение - это движение вдоль координатной прямой вправо, а вычитание - влево. Все ученики научились раскрывать скобки. Раскрытию скобок уделяется все оставшееся время урока. Устно и письменно раскрываем скобки в заданиях типа:

); - 20 + (- 7 + (- 5)).

Задание на дом. Ответьте на записанные в тетради вопросы, читая пункты учебника, указанные в конспекте.

На следующем уроке отрабатываем алгоритм сложения и вычитания чисел. У каждого учащегося на столе карта с инструкциями:

1) Спишите пример.

2) Раскройте, если они есть, скобки.

3) Нарисуйте координатную прямую.

4) Отметьте на ней без масштаба первое число.

5) Если за числом стоит знак «+», то двигайтесь вправо, а если знак «-» - то влево на столько единичных отрезков, сколько их содержит второе слагаемое. Нарисуйте это схематически и около числа, которое ищете, поставьте знак?

6) Поставьте вопрос «Где нуль?».

7) Определите знак числа, у которого стоит вопросительный знак, являющегося решением, так: если? стоит справа от 0, то у ответа знак +, а если? стоит слева от 0, то у ответа знак - . Запишите в ответе примера после знака = найденный знак.

8) Отметьте на чертеже три отрезка.

9) Найдите длину отрезка от нуля до знака?

Пример 1. - 35 + (- 9) = - 35 - 9 = - 44.

1. Списываю пример и раскрываю скобки.

2. Рисую картинку и рассуждаю так:

а) отмечаю - 35 и двигаюсь влево на 9 единичных отрезков; у искомого числа ставлю знак?;

б) спрашиваю себя: «Где нуль?». Отвечаю: «Нуль правее - 35 на 35 единичных отрезков, значит, знак у ответа -, так как? левее нуля»;

в) ищу расстояние от 0 до знака?. Для этого вычисляю 35 + 9 = 44 и приписываю полученное число в ответ к знаку - .

Пример 2. - 35 + 9.

Пример 3. 9 - 35.

Эти примеры решаем, проводя аналогичные примеру 1 рассуждения. Других случаев расположения чисел быть не может, и каждая картинка соответствует одному из правил, приведенных в учебнике и требующих запоминания. Проверено (и неоднократно), что данный способ сложения более рационален. Кроме того, он позволяет складывать числа даже тогда, когда ученик думает, что он ни одного правила не помнит. Данный способ работает и при действиях с дробями, нужно лишь привести их к общему знаменателю, а затем рисовать картинку. Например,

«Инструктивной» карточкой каждый пользуется до тех пор, пока в ней есть необходимость.

Такая работа заменяет нудное и однообразное действие счета по правилам живой и активно работающей мысли. Преимуществ множество: не надо зубрить и лихорадочно соображать, какое правило применять; легко запоминается устройство координатной прямой, а это и в алгебре, и в геометрии при вычислении величины отрезка, когда точка на прямой лежит между двумя другими точками. Эта методика эффективна как в классах с углубленным изучением математики, так и в классах возрастной нормы и даже в классах коррекции.

На этом уроке мы узнаем, что такое отрицательное число и какие числа называются противоположными. Также научимся складывать отрицательные и положительные числа (числа с разными знаками) и разберём несколько примеров сложения чисел с разными знаками.

Посмотрите на эту шестеренку (см. рис. 1).

Рис. 1. Шестеренка часов

Это не стрелка, которая непосредственно показывает время и не циферблат (см. рис. 2). Но без этой детали часы не работают.

Рис. 2. Шестеренка внутри часов

А что обозначает буква Ы? Ничего, кроме звука Ы. Но без нее не будут «работать» многие слова. Например, слово «мЫшь». Так и отрицательные числа: они не показывают никакого количества, но без них механизм вычислений был бы существенно труднее.

Мы знаем, что сложение и вычитание равноправные операции, и их можно выполнять в любом порядке. В записи в прямом порядке мы можем посчитать: , а начать с вычитания нет, так как мы не договорились еще, а что же такое .

Понятно, что увеличить число на , а потом уменьшить на означает в итоге уменьшение на три. Почему бы так и не обозначить этот объект и так и считать: прибавить - значит вычесть . Тогда .

Число может означать, например, яблока. Новое число не обозначает никакого реального количества. Само по себе оно ничего не означает, как буква Ы. Это просто новый инструмент для упрощения вычислений.

Назовем новые числа отрицательными . Теперь мы можем вычитать из меньшего числа большее. Технически всё равно нужно вычесть из большего числа меньшего, но в ответе поставить знак минус: .

Рассмотрим ещё один пример: . Можно сделать все действия подряд: .

Однако из первого числа легче вычесть третье, а потом прибавить второе число:

Отрицательные числа можно определить и по-другому.

Для каждого натурального числа, например , введем новое число, которое обозначим , и определим, что оно обладает следующим свойством: сумма числа и равна : .

Число будем называть отрицательным, а числа и - противоположными. Таким образом, мы получили бесконечное количество новых чисел, например:

Противоположное для числа ;

Противоположное числу ;

Противоположное числу ;

Противоположное числу ;

Вычтем из меньшего числа большее: . Прибавим к данному выражению : . Получили ноль. Однако согласно свойству: число, которое в сумме с пятью дает ноль, обозначается минус пять : . Следовательно, выражение можно обозначить как .

У каждого положительного числа существует число-близнец, которое отличается только тем, что перед ним стоит знак минус Такие числа называются противоположными (см. рис. 3).

Рис. 3. Примеры противоположных чисел

Свойства противоположных чисел

1. Сумма противоположных чисел равна нулю: .

2. Если из нуля вычесть положительное число, то результатом будет противоположное отрицательное число: .

1. Оба числа могут быть положительными, и складывать их мы уже умеем: .

2. Оба числа могут быть отрицательными.

Мы уже прошли сложение таких чисел на предыдущем уроке, но убедимся, что понимаем, что с ними делать. Например: .

Чтобы эту сумму найти, складываем противоположные положительные числа и и ставим знак минус.

3. Одно число может быть положительным, а другое - отрицательным.

Прибавление отрицательного числа мы, если это нам удобно, можем заменять на вычитание положительного: .

Ещё один пример: . Опять сумму записываем как разность. Вычесть из меньшего большее число можно, вычитая из большего меньшее, но поставив знак минус.

Слагаемые можем менять местами: .

Ещё один аналогичный пример: .

Во всех случаях в итоге получается вычитание.

Чтобы коротко сформулировать эти правила, давайте вспомним еще один термин. Противоположные числа, конечно, не равны друг другу. Но было бы странно не заметить у них общего. Это общее мы назвали модулем числа . Модуль у противоположных чисел одинаковый: у положительного числа он равен самому числу, а у отрицательного - противоположному, положительному. Например: , .

Чтобы сложить два отрицательных числа, нужно сложить их модули и поставить знак минус:

Чтобы сложить отрицательное и положительное число, нужно из большего модуля вычесть меньший модуль и поставить знак числа с большим модулем:

Оба числа отрицательные, следовательно, складываем их модули и ставим знак минус:

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак минус (знак числа с большим модулем):

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак минус (знак числа с большим модулем): .

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак плюс (знак числа с большим модулем): .

У положительных и отрицательных чисел исторически разная роль.

Сначала мы ввели натуральные числа для счета предметов:

Потом мы ввели другие положительные числа - дроби, для счета нецелых количеств, частей: .

Отрицательные же числа появились как инструмент для упрощения расчетов. Не было такого, чтобы в жизни были какие-то количества, которые нам было не посчитать, и мы изобрели отрицательные числа.

То есть отрицательные числа не возникли из реального мира. Просто они оказались настолько удобными, что кое-где им нашлось применение и в жизни. Например, мы часто слышим про отрицательную температуру. При этом мы никогда не сталкиваемся с отрицательным количеством яблок. В чем же разница?

Разница в том, что в жизни отрицательные величины используют только для сравнения, но не для количеств. Если в гостинице оборудовали подвал и туда пустили лифт, то, чтобы оставить привычную нумерацию обычных этажей, может появиться минус первый этаж. Этот минус первый означает всего лишь на этаж ниже уровня земли (см. рис. 1).

Рис. 4. Минус первый и минус второй этажи

Отрицательная температура отрицательна только по сравнению с нулем, который выбрал автор шкалы Андерс Цельсий. Есть другие шкалы, и та же самая температура уже может не быть там отрицательной.

При этом мы понимаем, что невозможно поменять точку отсчета так, чтобы яблок стало не пять, а шесть. Таким образом, в жизни положительные числа используются для определения количеств ( яблок, торта).

Еще мы их используем вместо имен. Каждому телефону можно было бы дать свое имя, но количество имен ограничено, а чисел нет. Поэтому мы используем номера для телефонов. Также для упорядочивания ( век идет за веком).

Отрицательные числа в жизни используются в последнем смысле (минус первый этаж ниже нулевого и первого этажей)

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. «Гимназия», 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6 классов заочной школы МИФИ. М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. М.: Просвещение, Библиотека учителя математики, 1989.
  1. Math-prosto.ru ().
  2. Youtube ().
  3. School-assistant.ru ().
  4. Allforchildren.ru ().

Домашнее задание

Дроби — это обычные числа, их тоже можно складывать и вычитать. Но из-за того, что в них присутствует знаменатель, здесь требуются более сложные правила, нежели для целых чисел.

Рассмотрим самый простой случай, когда есть две дроби с одинаковыми знаменателями. Тогда:

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить без изменений.

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель опять же оставить без изменений.

Внутри каждого выражения знаменатели дробей равны. По определению сложения и вычитания дробей получаем:

Как видите, ничего сложного: просто складываем или вычитаем числители — и все.

Но даже в таких простых действиях люди умудряются допускать ошибки. Чаще всего забывают, что знаменатель не меняется. Например, при сложении их тоже начинают складывать, а это в корне неправильно.

Избавиться от вредной привычки складывать знаменатели достаточно просто. Попробуйте сделать то же самое при вычитании. В результате в знаменателе получится ноль, и дробь (внезапно!) потеряет смысл.

Поэтому запомните раз и навсегда: при сложении и вычитании знаменатель не меняется!

Также многие допускают ошибки при сложении нескольких отрицательных дробей. Возникает путаница со знаками: где ставить минус, а где — плюс.

Эта проблема тоже решается очень просто. Достаточно вспомнить, что минус перед знаком дроби всегда можно перенести в числитель — и наоборот. Ну и конечно, не забывайте два простых правила:

  1. Плюс на минус дает минус;
  2. Минус на минус дает плюс.

Разберем все это на конкретных примерах:

Задача. Найдите значение выражения:

В первом случае все просто, а во втором внесем минусы в числители дробей:

Что делать, если знаменатели разные

Напрямую складывать дроби с разными знаменателями нельзя. По крайней мере, мне такой способ неизвестен. Однако исходные дроби всегда можно переписать так, чтобы знаменатели стали одинаковыми.

Существует много способов преобразования дробей. Три из них рассмотрены в уроке «Приведение дробей к общему знаменателю », поэтому здесь мы не будем на них останавливаться. Лучше посмотрим на примеры:

Задача. Найдите значение выражения:

В первом случае приведем дроби к общему знаменателю методом «крест-накрест». Во втором будем искать НОК. Заметим, что 6 = 2 · 3; 9 = 3 · 3. Последние множители в этих разложениях равны, а первые взаимно просты. Следовательно, НОК(6; 9) = 2 · 3 · 3 = 18.

Что делать, если у дроби есть целая часть

Могу вас обрадовать: разные знаменатели у дробей — это еще не самое большое зло. Гораздо больше ошибок возникает тогда, когда в дробях-слагаемых выделена целая часть.

Безусловно, для таких дробей существуют собственные алгоритмы сложения и вычитания, но они довольно сложны и требуют долгого изучения. Лучше используйте простую схему, приведенную ниже:

  1. Перевести все дроби, содержащие целую часть, в неправильные. Получим нормальные слагаемые (пусть даже с разными знаменателями), которые считаются по правилам, рассмотренным выше;
  2. Собственно, вычислить сумму или разность полученных дробей. В результате мы практически найдем ответ;
  3. Если это все, что требовалось в задаче, выполняем обратное преобразование, т.е. избавляемся от неправильной дроби, выделяя в ней целую часть.

Правила перехода к неправильным дробям и выделения целой части подробно описаны в уроке «Что такое числовая дробь ». Если не помните — обязательно повторите. Примеры:

Задача. Найдите значение выражения:

Здесь все просто. Знаменатели внутри каждого выражения равны, поэтому остается перевести все дроби в неправильные и сосчитать. Имеем:

Чтобы упростить выкладки, я пропустил некоторые очевидные шаги в последних примерах.

Небольшое замечание к двум последним примерам, где вычитаются дроби с выделенной целой частью. Минус перед второй дробью означает, что вычитается именно вся дробь, а не только ее целая часть.

Перечитайте это предложение еще раз, взгляните на примеры — и задумайтесь. Именно здесь начинающие допускают огромное количество ошибок. Такие задачи обожают давать на контрольных работах. Вы также неоднократно встретитесь с ними в тестах к этому уроку, которые будут опубликованы в ближайшее время.

Резюме: общая схема вычислений

В заключение приведу общий алгоритм, который поможет найти сумму или разность двух и более дробей:

  1. Если в одной или нескольких дробях выделена целая часть, переведите эти дроби в неправильные;
  2. Приведите все дроби к общему знаменателю любым удобным для вас способом (если, конечно, этого не сделали составители задач);
  3. Сложите или вычтите полученные числа по правилам сложения и вычитания дробей с одинаковыми знаменателями;
  4. Если возможно, сократите полученный результат. Если дробь оказалась неправильной, выделите целую часть.

Помните, что выделять целую часть лучше в самом конце задачи, непосредственно перед записью ответа.

В этой статье мы разберемся со сложением чисел с разными знаками . Здесь мы приведем правило сложения положительного и отрицательного числа, и рассмотрим примеры применения этого правила при сложении чисел с разными знаками.

Навигация по странице.

Правило сложения чисел с разными знаками

Положительные и отрицательные числа можно трактовать как имущество и долг соответственно, при этом модули чисел показывают величину имущества и долга. Тогда сложение чисел с разными знаками можно рассматривать как сложение имущества и долга. При этом понятно, что если имущество меньше долга, то после взаимозачета останется долг, если имущество больше долга, то после взаимозачета останется имущество, а если имущество равно долгу, то после расчетов не останется ни долга, ни имущества.

Объединим приведенные выше рассуждения в правило сложения чисел с разными знаками . Чтобы сложить положительное и отрицательное число, надо:

  • найти модули слагаемых;
  • сравнить полученные числа, при этом
    • если полученные числа равны, то исходные слагаемые являются противоположными числами, и их сумма равна нулю,
    • если же полученные числа не равны, то надо запомнить знак числа, модуль которого больше;
  • из большего модуля вычесть меньший;
  • перед полученным числом поставить знак того слагаемого, модуль которого больше.
  • Озвученное правило сводит сложение чисел с разными знаками к вычитанию из большего положительного числа меньшего числа. Также понятно, что в результате сложения положительного и отрицательного числа может получиться или положительное число, или отрицательное число, или нуль.

    Также заметим, что правило сложения чисел с разными знаками справедливо для целых чисел, для рациональных чисел и для действительных чисел.

    Примеры сложения чисел с разными знаками

    Рассмотрим примеры сложения чисел с разными знаками по правилу, разобранному в предыдущем пункте. Начнем с простого примера.

    www.cleverstudents.ru

    Сложение и вычитание дробей

    Дроби - это обычные числа, их тоже можно складывать и вычитать. Но из-за того, что в них присутствует знаменатель, здесь требуются более сложные правила, нежели для целых чисел.

    Рассмотрим самый простой случай, когда есть две дроби с одинаковыми знаменателями. Тогда:

    Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить без изменений.

    Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель опять же оставить без изменений.

    Задача. Найдите значение выражения:

    Внутри каждого выражения знаменатели дробей равны. По определению сложения и вычитания дробей получаем:

    Как видите, ничего сложного: просто складываем или вычитаем числители - и все.

    Но даже в таких простых действиях люди умудряются допускать ошибки. Чаще всего забывают, что знаменатель не меняется. Например, при сложении их тоже начинают складывать, а это в корне неправильно.

    Избавиться от вредной привычки складывать знаменатели достаточно просто. Попробуйте сделать то же самое при вычитании. В результате в знаменателе получится ноль, и дробь (внезапно!) потеряет смысл.

    Поэтому запомните раз и навсегда: при сложении и вычитании знаменатель не меняется!

    Также многие допускают ошибки при сложении нескольких отрицательных дробей. Возникает путаница со знаками: где ставить минус, а где - плюс.

    Эта проблема тоже решается очень просто. Достаточно вспомнить, что минус перед знаком дроби всегда можно перенести в числитель - и наоборот. Ну и конечно, не забывайте два простых правила:

  • Плюс на минус дает минус;
  • Минус на минус дает плюс.
  • Разберем все это на конкретных примерах:

    В первом случае все просто, а во втором внесем минусы в числители дробей:

    Что делать, если знаменатели разные

    Напрямую складывать дроби с разными знаменателями нельзя. По крайней мере, мне такой способ неизвестен. Однако исходные дроби всегда можно переписать так, чтобы знаменатели стали одинаковыми.

    Существует много способов преобразования дробей. Три из них рассмотрены в уроке «Приведение дробей к общему знаменателю», поэтому здесь мы не будем на них останавливаться. Лучше посмотрим на примеры:

    В первом случае приведем дроби к общему знаменателю методом «крест-накрест». Во втором будем искать НОК. Заметим, что 6 = 2 · 3; 9 = 3 · 3. Последние множители в этих разложениях равны, а первые взаимно просты. Следовательно, НОК(6; 9) = 2 · 3 · 3 = 18.

    Что делать, если у дроби есть целая часть

    Могу вас обрадовать: разные знаменатели у дробей - это еще не самое большое зло. Гораздо больше ошибок возникает тогда, когда в дробях-слагаемых выделена целая часть.

    Безусловно, для таких дробей существуют собственные алгоритмы сложения и вычитания, но они довольно сложны и требуют долгого изучения. Лучше используйте простую схему, приведенную ниже:

  • Перевести все дроби, содержащие целую часть, в неправильные. Получим нормальные слагаемые (пусть даже с разными знаменателями), которые считаются по правилам, рассмотренным выше;
  • Собственно, вычислить сумму или разность полученных дробей. В результате мы практически найдем ответ;
  • Если это все, что требовалось в задаче, выполняем обратное преобразование, т.е. избавляемся от неправильной дроби, выделяя в ней целую часть.
  • Правила перехода к неправильным дробям и выделения целой части подробно описаны в уроке «Что такое числовая дробь». Если не помните - обязательно повторите. Примеры:

    Здесь все просто. Знаменатели внутри каждого выражения равны, поэтому остается перевести все дроби в неправильные и сосчитать. Имеем:

    Чтобы упростить выкладки, я пропустил некоторые очевидные шаги в последних примерах.

    Небольшое замечание к двум последним примерам, где вычитаются дроби с выделенной целой частью. Минус перед второй дробью означает, что вычитается именно вся дробь, а не только ее целая часть.

    Перечитайте это предложение еще раз, взгляните на примеры - и задумайтесь. Именно здесь начинающие допускают огромное количество ошибок. Такие задачи обожают давать на контрольных работах. Вы также неоднократно встретитесь с ними в тестах к этому уроку, которые будут опубликованы в ближайшее время.

    Резюме: общая схема вычислений

    В заключение приведу общий алгоритм, который поможет найти сумму или разность двух и более дробей:



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные