Относительный показатель преломления двух сред равен. Закон преломления света. Абсолютный и относительный показатели преломления. Полное внутреннее отражение

Оптика является одним из старых разделов физики. Со времен античной Греции, многих философов интересовали законы движения и распространения света в разных прозрачных материалах, таких как вода, стекло, алмаз и воздух. В данной статье рассмотрено явление преломления света, акцентировано внимание на показателе преломления воздуха.

Эффект преломления светового луча

Каждый в своей жизни сталкивался сотни раз с проявлением этого эффекта, когда смотрел на дно водоема или на стакан с водой с помещенным в него каким-нибудь предметом. При этом водоем казался не таким глубоким, каким он являлся на самом деле, а предметы в стакане с водой выглядели деформированными или изломанными.

Явление преломления заключается в изломе его прямолинейной траектории, когда он пересекает поверхность раздела двух прозрачных материалов. Обобщая большое количество данных экспериментов, в начале XVII века голландец Виллеброрд Снелл получил математическое выражение, которое точно описывало это явление. Это выражение принято записывать в следующем виде:

n 1 *sin(θ 1) = n 2 *sin(θ 2) = const.

Здесь n 1 , n 2 - абсолютные показатели преломления света в соответствующем материале, θ 1 и θ 2 - углы между падающим и преломленным лучами и перпендикуляром к плоскости раздела сред, который проведен через точку пересечения луча и этой плоскости.

Эта формула носит название закона Снелла или Снелла-Декарта (именно француз записал ее в представленном виде, голландец же использовал не синусы, а единицы длины).

Помимо этой формулы, явление преломления описывается еще одним законом, который носит геометрический характер. Он заключается в том, что отмеченный перпендикуляр к плоскости и два луча (преломленный и падающий) лежат в одной плоскости.

Абсолютный показатель преломления

Эта величина входит в формулу Снелла, и ее значение играет важную роль. Математически показателю преломления n соответствует формула:

Символ c - это скорость электромагнитных волн в вакууме. Она составляет приблизительно 3*10 8 м/с. Величина v - это скорость движения света в среде. Таким образом, показатель преломления отражает величину замедления света в среде по отношению к безвоздушному пространству.

Из формулы выше следует два важных вывода:

  • величина n всегда больше 1 (для вакуума она равна единице);
  • это безразмерная величина.

Например, показатель преломления воздуха равен 1,00029, а для воды он составляет 1,33.

Показатель преломления не является величиной постоянной для конкретной среды. Он зависит от температуры. Более того, для каждой частоты электромагнитной волны он имеет свое значение. Так, приведенные выше цифры соответствуют температуре 20 o C и желтой части видимого спектра (длина волны - около 580-590 нм).

Зависимость величины n от частоты света проявляется в разложении белого света призмой на ряд цветов, а также в образовании радуги на небе во время проливного дождя.

Показатель преломления света в воздухе

Выше уже было приведено его значение (1,00029). Поскольку показатель преломления воздуха отличается лишь в четвертом знаке после запятой от нуля, то для решения практических задач его можно считать равным единице. Небольшое отличие n для воздуха от единицы говорит о том, что свет практически не замедляется молекулами воздуха, что связано с его относительно невысокой плотностью. Так, среднее значение плотности воздуха 1,225 кг/м 3 , то есть он в более чем 800 раз легче пресной воды.

Воздух - это оптически неплотная среда. Сам процесс замедления скорости света в материале носит квантовый характер и связан с актами поглощения и испускания фотонов атомами вещества.

Изменение состава воздуха (например, повышение содержания в нем водяного пара) и изменение температуры приводят к существенным изменениям показателя преломления. Ярким примером является эффект миража в пустыне, который возникает из-за различия показателей преломления воздушных слоев с разными температурами.

Граница раздела стекло - воздух

Стекло является гораздо более плотной средой, чем воздух. Его абсолютный показатель преломления лежит в пределах от 1,5 до 1,66 в зависимости от сорта стекла. Если взять среднее значение 1,55, тогда преломление луча на границе воздух - стекло можно рассчитать по формуле:

sin(θ 1)/sin(θ 2) = n 2 /n 1 = n 21 = 1,55.

Величина n 21 называется относительным показателем преломления воздух - стекло. Если же луч выходит из стекла в воздух, тогда следует пользоваться следующей формулой:

sin(θ 1)/sin(θ 2) = n 2 /n 1 = n 21 = 1/1,55 = 0,645.

Если угол преломленного луча в последнем случае будет равен 90 o , тогда ему соответствующий, называется критическим. Для границы стекло - воздух он равен:

θ 1 = arcsin(0,645) = 40,17 o .

Если луч будет падать на границу стекло - воздух с большими углами, чем 40,17 o , то он отразится полностью назад в стекло. Это явление так и называется "полное внутреннее отражение".

Критический угол существует только при движении луча из плотной среды (из стекла в воздух, но не наоборот).

ПРЕЛОМЛЕНИЯ ПОКАЗАТЕЛЬ (преломления коэффициент) - оптич. характеристика среды, связанная с преломлением света на границе раздела двух прозрачных оптически однородных и изотропных сред при переходе его из одной среды в другую и обусловленная различием фазовых скоростей распространения света и в средах. Величина П. п., равная отношению этих скоростейназ. относительным

П. п. этих сред. Если свет падает на вторую пли первую среду из (где скорость распространения света с) , то величинынназ. абсолютными П. п. данных сред. При этом а закон преломления может быть записан в виде где и- углы падения и преломления.

Величина абсолютного П. п. зависит от природы и строения вещества, его агрегатного состояния, темп-ры, давления и др. При больших интенсивностях П. п. зависит от интенсивности света (см. Нелинейная оптика) . У ряда веществ П. п. изменяется под действием внеш. электрич. поля (Керра эффект - в жидкостях и газах; электрооптич. Поккельса эффект - в кристаллах).

Для данной среды П. п. зависит от длины волны света l, причём в области полос поглощения эта зависимость носит аномальный характер (см. Дисперсия света ).В рентг. области П. п. практически для всех сред близок к 1, в видимой области для жидкостей и твёрдых тел - порядка 1,5; в ИК-области для ряда прозрачных сред 4,0 (для Ge).

Лит.: Ландсберг Г. С., Оптика, 5 изд., М., 1976; Сивухин Д. В., Общий курс , 2 изд., [т. 4] - Оптика, М., 1985. В. И. Малышев ,

Законы физики играют очень важную роль при проведении расчетов для планирования определенной стратегии производства какого-либо товара или при составлении проекта строительства сооружений различного назначения. Многие величины являются расчетными, так что перед стартом работ по планированию производятся измерения и вычисления. Например, показатель преломления стекла равен отношению синуса угла падения к синусу угла преломления.

Так что вначале идет процесс измерения углов, затем вычисляют их синус, а уже только потом можно получить искомое значение. Несмотря на наличие табличных данных, стоит каждый раз проводить дополнительные расчеты, так как в справочниках зачастую используются идеальные условия, которых добиться в реальной жизни практически невозможно. Поэтому на деле показатель обязательно будет отличаться от табличного, а в некоторых ситуациях это имеет принципиальное значение.

Абсолютный показатель

Абсолютный показатель преломления зависит от марки стекла, так как на практике имеется огромное количество вариантов, отличающихся по составу и степени прозрачности. В среднем он составляет 1,5 и колеблется вокруг этого значения на 0,2 в ту или иную сторону. В редких случаях могут быть отклонения от этой цифры.

Опять-таки, если важен точный показатель, то без дополнительных измерений не обойтись. Но и они не дают стопроцентно достоверного результата, так как на итоговое значение будет влиять положение солнца на небосводе и облачность в день измерений. К счастью, в 99,99% случае достаточно просто знать, что показатель преломления такого материала, как стекло больше единицы и меньше двойки, а все остальные десятые и сотые доли не играют роли.

На форумах, которые занимаются помощью в решении задач по физике, часто мелькает вопрос, каков показатель преломления стекла и алмаза? Многие думают, что раз эти два вещества похожи внешне, то и свойства у них должны быть примерно одинаковыми. Но это заблуждение.

Максимальное преломление у стекла будет находиться на уровне около 1,7, в то время как у алмаза этот показатель достигает отметки 2,42. Данный драгоценный камень является одним из немногих материалов на Земле, чей уровень преломления превышает отметку 2. Это связано с его кристаллическим строением и большим уровнем разброса световых лучей. Огранка играет в изменениях табличного значения минимальную роль.

Относительный показатель

Относительный показатель для некоторых сред можно охарактеризовать так:

  • - показатель преломления стекла относительно воды составляет примерно 1,18;
  • - показатель преломления этго же материала относительно воздуха равен значению 1,5;
  • - показатель преломления относительно спирта - 1,1.

Измерения показателя и вычисления относительного значения проводятся по известному алгоритму. Чтобы найти относительный параметр, нужно разделить одно табличное значение на другое. Или же произвести опытные расчеты для двух сред, а потом уже делить полученные данные. Такие операции часто проводятся на лабораторных занятиях по физике.

Определение показателя преломления

Определить показатель преломления стекла на практике довольно сложно, потому что требуются высокоточные приборы для измерения начальных данных. Любая погрешность будет возрастать, так как при вычислении используются сложные формулы, требующие отсутствия ошибок.

Вообще данный коэффициент показывает, во сколько раз замедляется скорость распространения световых лучей при прохождении через определенное препятствие. Поэтому он характерен только для прозрачных материалов. За эталонное значение, то бишь за единицу, взят показатель преломления газов. Это было сделано для того, чтобы можно было отталкиваться от какого-нибудь значения при расчетах.

Если солнечный луч падает на поверхность стекла с показателем преломления, который равен табличному значению, то изменить его можно несколькими способами:

  • 1. Поклеить сверху пленку, у которой коэффициент преломления будет выше, чем у стекла. Этот принцип используется в тонировке окон автомобиля, чтобы улучшить комфорт пассажиров и позволить водителю более четко наблюдать за дорожной обстановкой. Также пленка будет сдерживать и ультрафиолетовое излучение.
  • 2. Покрасить стекло краской. Так поступают производители дешевых солнцезащитных очков, но стоит учесть, что это может быть вредно для зрения. В хороших моделях стекла сразу производятся цветными по специальной технологии.
  • 3. Погрузить стекло в какую-либо жидкость. Это полезно исключительно для опытов.

Если луч света переходит из стекла, то показатель преломления на следующем материале рассчитывается при помощи использования относительного коэффициента, который можно получить, сопоставив между собой табличные значения. Эти вычисления очень важны при проектировке оптических систем, которые несут практическую или экспериментальную нагрузку. Ошибки здесь недопустимы, потому что они приведут к неправильной работе всего прибора, и тогда любые полученные с его помощью данные будут бесполезны.

Чтобы определить скорость света в стекле с показателем преломления, нужно абсолютное значение скорости в вакууме разделить на величину преломления. Вакуум используется в качестве эталонной среды, потому что там не действует преломление из-за отсутствия каких-либо веществ, которые могли бы мешать беспрепятственному движению световых лучей по заданной траектории.

В любых расчетных показателях скорость будет меньше, чем в эталонной среде, так как коэффициент преломления всегда больше единицы.

Преломление света - явление, при котором луч света, переходя из одной среды в другую, изменяет направление на границе этих сред.

Преломление света происходит по следующему закону:
Падающий и преломленный лучи и перпендикуляр, проведенный к границе раздела двух сред в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред:
,
где α - угол падения,
β - угол преломления,
n - постоянная величина, не зависящая от угла падения.

При изменении угла падения изменяется и угол преломления. Чем больше угол падения, тем больше угол преломления.
Если свет идет из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения: β < α.
Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую без преломления.

абсолютный показатель преломления вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде n=c/v
Величина n, входящая в закон преломления, называется относительным показателем преломления для пары сред.

Величина n есть относительный показатель преломления среды В по отношению к среде А, а n" = 1/n есть относительный показатель преломления среды А по отношению к среде В.
Эта величина при прочих равных условиях больше единицы при переходе луча из среды более плотной в среду менее плотную, и меньше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая.
Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды В, преломляется сильнее, чем при падении на нее из другой среды А; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления.

(Абсолютный - относительно вакуума.
Относительный - относительно любого другого вещества (того же воздуха, например).
Относительный показатель двух веществ есть отношение их абсолютных показателей.)

Полное внутреннее отражение - внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. Коэффициент отражения при полном внутреннем отражении не зависит от длины волны.

В оптике это явление наблюдается для широкого спектра электромагнитного излучения, включая рентгеновский диапазон.

В геометрической оптике явление объясняется в рамках закона Снелла. Учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего показателя преломления к большему показателю, электромагнитная волна должна полностью отражаться в первую среду.

В соответствии с волновой теорией явления, электромагнитная волна всё же проникает во вторую среду - там распространяется так называемая «неоднородная волна», которая экспоненциально затухает и энергию с собой не уносит. Характерная глубина проникновения неоднородной волны во вторую среду порядка длины волны.

Законы преломления света.

Из всего сказанного заключаем:
1 . На границе раздела двух сред различной оптической плотности луч света при переходе из одной среды в другую меняет своё направление.
2. При переходе луча света в среду с большей оптической плотностью угол преломления меньше угла падения; при переходе луча света из оптически более плотной среды в среду менее плотную угол преломления больше угла падения.
Преломление света сопровождается отражением, причём с увеличением угла падения яркость отражённого пучка возрастает, а преломлённого ослабевает. Это можно увидеть проводя опыт, изображённом на рисунке. Следовательно, отражённый пучок уносит с собой тем больше световой энергии, чем больше угол падения.

Пусть MN -граница раздела двух про зрачных сред, например, воздуха и воды, АО -падающий луч, ОВ - преломленный луч, -угол падения, -угол преломления, -скорость распространения света в первой среде, - скорость распространения света во второй среде.

К ЛЕКЦИИ №24

«ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ АНАЛИЗА»

РЕФРАКТОМЕТРИЯ.

Литература:

1. В.Д. Пономарёв «Аналитическая химия» 1983год 246-251

2. А.А. Ищенко «Аналитическая химия» 2004 год стр 181-184

РЕФРАКТОМЕТРИЯ.

Рефрактометрия является одним их самых простых физических методов анализа с затратой минимального количества анализируемого вещества и проводится за очень короткое время.

Рефрактометрия - метод, основанный на явлении преломления или рефракции т.е. изменении направления распространения света при переходе из одной среды в другую.

Преломление, так же как и поглощение света, является следствием взаимодействия его со средой. Слово рефрактометрия означает измерение преломления света, которое оценивается по величине показателя преломления.

Величина показателя преломления n зависит

1)от состава веществ и систем,

2) от того, в какой концентрации и какие молекулы встречает световой луч на своем пути, т.к. под действием света молекулы разных веществ поляризуются по-разному. Именно на этой зависимости и основан рефрактометрический метод.

Метод этот обладает целым рядом преимуществ, в результате чего он нашел широкое применение как в химических исследованиях, так и при контроле технологических процессов.

1)Измерение показатели преломления являются весьма простым процессом, который осуществляется точно и при минимальных затратах времени и количества вещества.

2) Обычно рефрактометры обеспечивают точность до 10% при определении показателя преломления света и содержания анализируемого вещества

Метод рефрактометрии применяют для контроля подлинности и чистоты, для идентификации индивидуальных веществ, для определения строения органических и неорганических соединений при изучении растворов. Рефрактометрия находит применение для определения состава двухкомпонентных растворов и для тройных систем.

Физические основы метода

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ.

Отклонение светового луча от первоначального направления при переходе его из одной среды в другую тем больше, чем больше разница в скоростях распространения света в двух



данных средах.

Рассмотрим преломление светового луча на границе каких-либо двух прозрачных сред I и II(См. Рис.). Условимся, что среда II обладает большей преломляющей способностью и, следовательно, n 1 и n 2 - показывает преломление соответствующих сред. Если среда I -это не вакуум и не воздух, то отношение sin угла падения светового луча к sin угла преломления даст величину относительного показателя преломления n отн. Величина n отн. может быть так же определена как отношение показателей преломления рассматриваемых сред.

n отн. = ----- = ---

Величина показателя преломления зависит от

1) природы веществ

Природу вещества в данном случае определяет степень деформируемости его молекул под действием света - степень поляризуемости. Чем интенсивней поляризуемость, тем сильнее преломление света.

2)длины волны падающего света

Измерение показателя преломления проводится при длине волны света 589,3 нм (линия D спектра натрия).

Зависимость показателя преломления от длины световой волны называется дисперсией. Чем меньше длина волны, тем значительнее преломление . Поэтому, лучи разных длин волн преломляются по-разному.

3)температуры , при которой проводится измерение. Обязательным условием определения показателя преломления является соблюдение температурного режима. Обычно определение выполняется при 20±0,3 0 С.

При повышении температуры величина показателя преломления уменьшается, при понижении - увеличивается .

Поправку на влияние температуры рассчитывают по следующей формуле:

n t =n 20 + (20-t) ·0,0002, где

n t – показатель преломления при данной температуре,

n 20 -показатель преломления при 20 0 С

Влияние температуры на значения показателей преломления газов и жидких тел связано с величинами их коэффициентов объемного расширения. Объем всех газов и жидких тел при нагревании увеличивается, плотность уменьшается и,следовательно, уменьшается показатель

Показатель преломления, измеренный при 20 0 С и длине волны света 589,3 нм, обозначается индексом n D 20

Зависимость показателя преломления гомогенной двухкомпонентной системы от ее состояния устанавливается экспериментально, путем определения показателя преломления для ряда стандартных систем(например,растворов), содержание компонентов в которых известно.

4)концентрации вещества в растворе.

Для многих водных растворов веществ показатели преломления при разных концентрациях и температурах надежно измерены, и в этих случаях можно пользоваться справочными рефрактометрическими таблицами . Практика показывает, что при содержании растворенного вещества, не превышающем 10-20%, наряду с графическим методом в очень многих случаях можно пользоваться линейным уравнением типа:

n=n о +FC,

n- показатель преломления раствора,

- показатель преломления чистого растворителя,

C - концентрация растворенного вещества,%

F -эмпирический коэффициент, величина которого найдена

путем определения коэффициентов преломления растворов известной концентрации.

РЕФРАКТОМЕТРЫ.

Рефрактометрами называют приборы, служащие для измерения величины показателя преломления. Существует 2 вида этих приборов: рефрактометр типа Аббе и типа Пульфриха. И в тех и в др. измерения основаны на определении величины предельного угла преломления. На практике применяются рефрактометры различных систем: лабораторный-РЛ, универсальный РЛУ и др.

Показатель преломления дистиллированной воды n 0 =1,33299, практически же этот показатель принимает в качестве отсчетного как n 0 =1,333.

Принцип работы на рефрактометрах основан на определении показателя преломления методом предельного угла (угол полного отражения света).

Ручной рефрактометр

Рефрактометр Аббе



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные