Мировой опыт и перспективы развития ядерной энергетики. Технологии

В преддверии величайшей социальной революции в истории человечества разум обязан искать пути смягчения предстоящего переходного процесса. Такое смягчение может быть достигнуто, если мы сумеем сформулировать такие энергетические программы, которые дадут надежду людям на существенное увеличение энергетического производства без воздействия на биосферу Земли.

Поэтому сегодня важнейшей задачей, стоящей перед человечеством, является проблема создания экологически чистой энергетики, энергетики, способной работать длительное время без существенного влияния на биологическое равновесие планеты.

После решения уйти из ракетной тематики я, по рекомендации моего друга, профессора Московского энергетического института Михаила Ефимовича Дейча, встретился с его учеником, директором ВНИИ атомного энергетического машиностроения Геннадием Алексеевичем Филипповым. На моё признание в том, что я не знаю даже терминологии в стационарной энергетике, он ответил просто: «Ничего, разберётесь. Для меня главное то, что Вас рекомендовал Дейч». В результате, не зная ни тематики, ни одного человека в институте, я стал его заместителем по науке.

Я достаточно быстро вошёл в новую для себя проблематику. После Чернобыльской катастрофы министр энергетического машиностроения СССР Владимир Макарович Величко назначил меня руководителем работ по линии министерства на ЧАЭС. Наше министерство, обладая десятками крупнейших заводов, было поставщиком примерно 70% оборудования на все АЭС страны. Близкое знакомство в течение примерно года (с мая 1986 по июль 1987) с реальными проблемами радиационного поражения заставили меня начать плотно думать о будущей энергетике. В результате я пришёл к пониманию того, что в современном виде у атомной энергетики перспектив нет.

Основное назначение атомной энергетики – сократить потребление органического топлива и тем самым уменьшить потребление атмосферного кислорода и эмиссию углекислого газа в атмосферу Земли. Атомная энергетика в современном виде не в состоянии решить эту проблему. Несмотря на сорокалетнюю историю развития, её доля в общем энергетическом балансе планеты составляет всего несколько процентов. С точки зрения влияния на решение основной задачи, атомной энергетики сегодня просто нет. Есть только связанные с ней проблемы.

Прогнозы развития атомной энергетики, базирующейся на реакциях деления изотопов U 235 и Pu 239 , являются крайне пессимистическими. Увеличение генерирующих мощностей было запланировано только до 2007–2008 годов, да и то в основном за счёт Юго-Восточной Азии (3/4 всех новых мощностей планировалось ввести именно там). Во всех западных странах заказы на ввод новых блоков в предстоявшее десятилетие и далее были аннулированы. После 2008–2010 годов предполагалось начать массовый вывод из эксплуатации блоков, отработавших свой ресурс, что всегда бывает сопряжено с перемещением и захоронением огромных масс радиоактивных отходов. Западная общественность к проблеме перемещения отходов и сооружению хранилищ на своей территории относится резко отрицательно.


В учёном совете нашего института, например, начали появляться работы по выводу АЭС из эксплуатации. Предлагается практически их не трогать, а просто консервировать и ждать сотни лет. Причём стоить всё это будет сотни миллионов долларов по каждой станции плюс десятки миллионов ежегодно. Если и далее продолжить строительство современных АЭС, сколько же таких дорогостоящих памятников мы будем иметь уже в ближайшее время?

Наиболее популярна программа замкнутого топливного цикла с использованием быстрых реакторов для наработки плутония. В этой программе плутонию предназначается роль основного делящегося материала. (При широком развитии современной атомной энергетики без плутония не обойтись просто потому, что запасы 35-го урана по энергоёмкости не превышают разведанных запасов, например, нефти и газа). Программа абсолютно бесперспективна просто потому, что технологии с плутонием не могут найти широкого применения, поскольку плутоний является основным материалом для бомб. Для Запада нет ничего страшнее передачи плутониевых технологий развивающимся странам. А без развития атомной энергетики в этих странах проблему эмиссии не решить. Западные страны не будут развивать атомную энергетику из-за отходов, а развивающимся не дадут, поскольку Запад не хочет, чтобы плутоний оказался в других руках. Так что с бридерами тупик, и напрашивается следующий вывод: сегодня нет реальных предложений для решения основной технологической проблемы нашего времени, проблемы сокращения эмиссии углекислоты и потребления атмосферного кислорода . Есть только, что называется, организационные подходы, о которых говорилось выше. Они приведут к резкому обострению ситуации между 2010 и 2015 годами. Поэтому сегодня крайне важно предложить энергетическую программу, которая сумела бы ослабить напряжённость в международных отношениях в период перехода к адекватным формам социальной организации. По существу, сегодня речь идёт о спасении западной цивилизации от чрезмерных потерь .

Есть ещё одно чрезвычайно важное обстоятельство, которое делает невозможным широкое распространение современных ядерных технологий. Оно заключается в том, что современные технологии ориентированы на использование урана-235, а его, как было сказано, мало. К середине текущего века энергетические потребности человечества за счёт только земных ресурсов удовлетворить будет невозможно. Потребуется промышленно-энергетический выход в космос. Единственным средством для этого является как раз уран-235, поскольку с помощью химии крупные задачи в космосе решены быть не могут. Поэтому бездумное сжигание урана-235 – это не просто глупость, а преступление перед человечеством.

Для того чтобы найти подходы к решению энергетической проблемы, я в течение всех 90-х годов искал пути создания чистой ядерной энергетики. Такая схема вроде бы обозначилась. И если это действительно так, то это будет последний сравнительно дешёвый технологический подарок человечеству в период наступления сложнейших социальных преобразований.

Дело в том, что выделение положительной энергии при делении ядер начинается с массовых чисел в районе 60. В частности, деление ядер свинца и висмута, имеющих массовое число несколько больше двухсот, даёт энергию около 140–150 MэВ, в то время как уран и плутоний дают примерно 200 MэВ. Однако деление U 235 и Pu 239 , составляющих основу современной ядерной энергетики, происходит под действием нейтронов сравнительно низкой энергии (до 1 МэВ). Ядра же «неделящихся» актиноидов (Th, U 238) делятся при энергии более 1 MэВ. Нейтроны высоких энергий (более 10 МэВ) на Земле имеются только в космических лучах, интенсивность которых крайне мала. Поэтому основные процессы взаимодействия нейтронов высоких энергий с ядрами различных веществ (сечения ядерных реакций) изучены довольно слабо.

В принципе, нейтроны любых энергий можно получить при использовании ускорителей протонов. Однако эти ускорители имели до последнего времени крайне малые коэффициенты полезного действия. Только в конце XX века появились технологии, позволяющие создать ускорители протонов достаточно высокой эффективности. Это дало возможность начать эксперименты в области так называемой электроядерной энергетики. Все в мире пошли по пути получения на ускорителях нейтронов с энергией, достаточной для деления U 235 . Для этой цели требовались ускорители с энергией не более 1–1,5 ГэВ. В случае с «неделящимися» изотопами этой энергии мало.

Включиться в программу электроядерных экспериментов по урановой программе на ускорителе в г. Дубна нам помог последний из могикан советской атомной техники академик Валерий Иванович Субботин. Я с ним познакомился в 1986 году во время работы чернобыльских комиссий. В. И. Субботин познакомил меня с Александром Михайловичем Балдиным, директором лаборатории физики высоких энергий Объединённого института ядерной физики в г. Дубна. Александр Михайлович дал нам возможность принять участие в эксперименте на синхрофазотроне ИЯФ. Формально мы должны были разработать аппаратуру теплофизических измерений для уран-свинцовых сборок, используемых в электроядерных экспериментах. Поставить вопрос о проведении эксперимента сразу на сборках, состоящих из материалов актиноидной группы, было абсолютно нереально. Поэтому я договорился о проведении эксперимента на большой чисто свинцовой сборке при энергии протонов в 5 ГэВ. Однако принять участие в работе я не смог, поскольку после этого я надолго попал в больницу.

Эксперимент был выполнен в июле 1998 года. Его проводила большая международная группа, лидерами в которой были учёные из ФРГ. К сожалению, в части методического обеспечения той задачи, которую я ставил, он был сделан плохо. Я не был поставлен в известность о проведении эксперимента. Поэтому я не смог дать своих предложений по его методическому обеспечению. Термопары нормально сработали, большего для программы деления урана не требовалось, а потому материалы эксперимента, никем не востребованные, пролежали почти год. Когда после выхода из больницы в мае 1999 года я узнал, что эксперимент выполнен, я попросил показать мне его результаты. Одного взгляда на экспериментальные кривые было достаточно, чтобы увидеть то, что положительный результат всей программы не исключён.

Дело в том, что если реакция деления свинца не играет особой роли, то тепловыделение должно происходить только в центре свинцовой сборки за счёт торможения заряженных частиц, образующихся после разрушения ядер свинца и имеющих малый пробег в плотном веществе свинца. Однако было обнаружено, что термопара, расположенная на периферии мишени, начала нагреваться одновременно с центральными термопарами в момент включения пучка, к тому же всего в два раза слабее, чем центральная. Оценки показывают, что ни теплопроводность, ни нагрев за счёт термализации нейтронов, ни гамма-излучение, ни нагрев за счёт заряженных частиц не могут обеспечить наблюдаемый темп разогрева периферийной зоны. Об этом же говорят расчёты, которые были выполнены по моей просьбе Институтом прикладной математики РАН им. М. В. Келдыша по коду Лос-Аламосской лаборатории США. В эксперименте же грелась и периферия сборки. Это могло быть связано только с делением свинца. Результат требовал немедленной проверки, ввиду его исключительной важности.

Я начал требовать проведения чистого эксперимента по своей методике. Я написал массу писем В. В. Путину и членам его Правительства. Всё безрезультатно. Дело упирается, очевидно, в то, что у атомного лобби имеется огромное желание заработать на завозе отработавшего топлива из-за рубежа в Россию. Доказательство возможности создания ядерной энергетики, не использующей U 235 и Pu 239 , закроет навсегда этот миф. (Когда проводились слушания по этому вопросу в Думе, из всех специалистов, работающих в атомной энергетике, только В. И. Субботин и я выступили против варианта с завозом отработанного топлива. Нам не давали говорить. У меня, например, просто выключили микрофон.)

Каких-либо перспектив у современной схемы ядерной энергетики в любом случае просто нет. Видит Бог, я делал и буду делать всё, что могу, чтобы провести свой эксперимент. Его необходимо выполнить, ввиду его чрезвычайной важности. Тем более, что Миннауки и Минатом финансируют совершенно бессмысленные работы по делению урана в электроядерных схемах. Будто бы уран не делится и без ускорителей. В России существует большая, хорошо финансируемая программа по этой теме, руководимая министром Минатома.

Когда этот раздел был уже написан, мне позвонили из Миннауки и сообщили, что решение о финансировании эксперимента, наконец, после трёх лет изнурительной борьбы принято и его финансирование открыто. Эксперимент пройдёт в Протвино на ускорителе Института физики высоких энергий в марте – апреле 2002 года. Я не знаю, что повлияло на принятие этого решения. Депутат Государственной Думы от Арзамаса доктор физико-математических наук Иван Игнатьевич Никитчук послал два запроса в Министерство науки. В последнее время я предпринял несколько достаточно резких шагов. В частности, я имел откровенный разговор по телефону с первым заместителем министра Миннауки С. Б. Алёшиным. Мне представляется, что мне удалось его убедить.

Этот эксперимент мне нужен, чтобы точно знать, имеем ли мы последний технологический резерв для смягчения сложнейших социальных процессов в ближайшем будущем. Но если и его результат окажется отрицательным, то остаются только весьма болезненные организационные решения, о которых я говорил выше.

По уровню научно-технических разработок российская атомная энергетика является одной из лучших в мире. Предприятия имеют огромные возможности для решения повседневных или масштабных задач. Специалисты прогнозируют перспективное будущее в этой области, так как РФ имеет большие запасы руд для выработки энергии.

Краткая история развития атомной энергетики в России

Атомная отрасль берет свое начало со времен СССР, когда планировалось реализовать один из авторских проектов о создании взрывчатки из уранового вещества. Летом, в 1945 году благополучно прошло испытание атомное оружие в США, а в 1949 году на Семипалатинском полигоне впервые использовали ядерную бомбу РДС-1. Дальнейшее развитие атомной энергетики в России было следующим:


Научно-производственные коллективы трудились много лет для достижения высокого уровня в атомном оружии, и останавливаться на достигнутом не собираются. Позже вы узнаете о перспективах в этой области до 2035 года.

Действующие АЭС в России: краткая характеристика

В настоящее время существует 10 действующих АЭС. Особенности каждой из них будут рассмотрены далее.


  • №1 и №2 с реактором АМБ;
  • №3 с реактором БН-600.

Вырабатывает до 10% от общего объема электрической энергии. В настоящее время многие системы Свердловска находятся в режиме длительной консервации, а эксплуатируется только энергоблок БН-600. Белоярская АЭС расположена в г. Заречный.

  1. Билибинская АЭС – единственный источник, снабжающий теплом г. Билбино и имеющий мощность 48 МВт. Станция вырабатывает около 80% энергии и соответствует всем требованиям, предъявляемым к установке аппаратуры:
  • максимальная простота эксплуатации;
  • повышенная надежность работы;
  • защита от механических повреждений;
  • минимальный объем монтажных работ.

Система имеет важное преимущество: при неожиданном прерывании работы блока ей не наносится вред. Станция расположена в Чукотском автономном округе, в 4,5, расстояние до Анадыря – 610 км.


Каково состояние атомной энергетики сегодня?

Сегодня существует более 200 предприятий, специалисты которых не покладая рук трудятся над совершенством атомной энергетики России . Поэтому мы уверенно двигаемся вперед в этом направлении: разрабатываем новые модели реакторов и постепенно расширяем производство. Согласно мнению участников Всемирной ядерной ассоциации, сильная сторона России — развитие технологий на быстрых нейронах.

Российские технологии, многие из которых были разработаны компанией «Росатом», высоко ценятся за рубежом за относительно небольшую стоимость и безопасность. Следовательно, у нас достаточно высокий потенциал в атомной отрасли.

Зарубежным партнерам РФ оказывает множество услуг, касающихся рассматриваемой деятельности. К их числу относится:

  • возведение атомных энергоблоков с учетом правил безопасности;
  • поставка ядерного топлива;
  • вывод использованных объектов;
  • подготовка международных кадров;
  • помощь в развитии научных работ и ядерной медицины.

Россия строит большое количество энергоблоков за границей. Успешно были такие проекты, как «Бушер» или «Куданкулам», созданные для иранской и индийской АЭС. Они позволили создавать чистые, безопасные и эффективные источники энергии.

Какие проблемы, связанные с атомной отраслью, возникали в России?

В 2011 году на строящейся ЛАЭС-2 произошел обвал металлических конструкций (вес около 1200 тонн). В ходе надзорной комиссии обнаружилась поставка несертифицированной арматуры, в связи с чем были приняты следующие меры:

  • наложение штрафа на ЗАО «ГМЗ-Химмаш» в размере 30 тыс. руб.;
  • выполнение расчетов и проведение работ, направленных на усиление арматуры.

По мнению Ростехнадзора, главной причиной нарушения является недостаточный уровень квалификации специалистов «ГМЗ-Химмаш». Слабое знание требований федеральных норм, технологий изготовления подобного оборудования и конструкторской документации привело к тому, что многие подобные организации лишились лицензий.

В Калининской АЭС повысился уровень тепловой мощности реакторов. Такое событие крайне нежелательно, так как появляется вероятность возникновения аварии с серьезными радиационными последствиями.

Многолетние исследования, проведенные в зарубежных странах, показали, что соседство с АЭС приводит к росту заболеваний лейкемией. По этой причине в России было множество отказов от эффективных, но очень опасных проектов.

Перспективы АЭС в России

Прогнозы дальнейшего использования атомной энергии противоречивы и неоднозначны. Большинство из них сходится к мнению, что к середине XXI века потребность возрастет в связи с неизбежным увеличением численности населения.

Министерство энергетики РФ сообщило энергетическую стратегию России на период до 2035 года (сведения поступили в 2014 году). Стратегическая цель атомной энергетики включает в себя:


С учетом установленной стратегии, в дальнейшем предусматривается решить следующие задачи:

  • улучшить схему производства, обращения и захоронения топливно-сырьевых ресурсов;
  • развить целевые программы, обеспечивающие обновление, устойчивость и повышение эффективности имеющейся топливной базы;
  • реализовать наиболее эффективные проекты с высоким уровнем безопасности и надежности;
  • увеличить экспорт ядерных технологий.

Государственная поддержка массового производства атомных энергоблоков – основа благополучного продвижения товаров за рубеж и высокой репутации России на международном рынке.

Что препятствует развитию атомной энергетики в России?

Развитие атомной энергетики в РФ сталкивается с определенными трудностями. Вот основные из них:


В России атомная энергетика является одним из важных секторов экономики. Успешная реализация разрабатываемых проектов способна помочь развить остальные отрасли, но для этого нужно приложить немало усилий.

Событие: Во время встречи со студентами Национального исследовательского ядерного института «МИФИ» (НИЯУ МИФИ), произошедшей накануне Татьянина Дня, президент России Владимир Путин заявил, что до 2030 года в России планируется построить 28 энергоблоков АЭС. При этом он подчеркнул, что проекты, реализуемые Госкорпорацией «Росатом» на российской территории и за рубежом, соответствуют самым высоким стандартам безопасности.

Комментирует: эксперт Центра Мария Ананьева

Регулярные встречи Владимира Путина с учащимися ведущих вузов России можно считать миниатюрными моделями послания Федеральному Собранию, в котором ежегодно президент определяет внутри- и внешнеполитические приоритеты страны. В ряд приоритетов, озвученных в стенах НИЯУ МИФИ, наряду с такими вопросами, как поддержка наукоградов и высшего образования как такового было логично вписано и развитие мирного атома в России. В своем выступлении Путин отметил, что на сегодняшний день доля атомной энергетики в структуре энергобаланса России составляет всего 16%, и цель - увеличить ее до 25% к 2030 году, для чего нужно построить 28 крупных энергоблоков. Именно такое количество, как оговорился сам президент, было произведено и введено в эксплуатацию за весь советский период. Кроме того, Путин добавил, что Госкорпорация «Росатом» уже получила заказы на строительство более 20 блоков АЭС за рубежом. Несмотря на оптимистичный характер визита Путина в НИЯУ МИФИ, завершившегося музыкальным экспромтом в виде мелодии «Московские окна», наигранной президентом на рояле, все же возникают сомнения в перспективности обозначенных планов.

Игра с цифрами?

Стоит обратить внимание на часто встречающуюся разницу в цифрах по поводу доли атомной энергии в энергобалансе России к 2030 году. Так, согласно Энергетической стратегии России на период до 2030 года, утвержденной Правительством РФ в 2009 году, рост установленной мощности АЭС к 2013-2015 гг. (первый этап реализации стратегии) - до 28-33 ГВт, к 2020-2022 гг. (второй этап) - до 37-41 ГВт, к 2030 г. (третий этап) - до 52-62 ГВт. Соответственно, доля АЭС в общем объеме производства должна составить 17,6 – 18,3%, на втором - 18,2-18,3%, а на третьем – 19,7-19,8%. Таким образом, за 16 лет при стремлении «создать инновационный и эффективный энергетический сектор страны, адекватный как потребностям растущей экономики в энергоресурсах, так и внешнеэкономическим интересам России, обеспечивающий необходимый вклад в социально ориентированное инновационное развитие страны», а также при условии прямой государственной поддержки атомной энергетики, рост доли последней составит всего около 2%, что не соответствует упомянутым Путиным 9%. Примечательно, что в сентябре 2013 года на 38-м симпозиуме Всемирной ядерной ассоциации заместитель генерального директора «Росатома» по развитию и международному бизнесу Кирилл Комаров побил все рекорды, уверяя, что к 2030 году доля атомной генерации в России вырастет до 30%.

Во-первых, подобные претенциозные заявления, слабо коррелирующие с официальными документами, представляют собой сигналы вовне, цель которых заключается в привлечении частных инвесторов в российскую атомную энергетику – весьма специфичную область не только потому, что она в силу своего стратегического характера находится под контролем государства, но и из соображений безопасности. Хотя «Росатом» вкладывает огромные средства в поддержание позитивного имиджа своей деятельности, а руководство страны постоянно говорит о неизбежности развития мирного атома как экологически чистого, безопасного и конкурентоспособного источника энергии, многие все равно в качестве контраргумента приводят масштабные аварии на американской АЭС «Три-Майл-Айленд» в 1979 году, на Чернобыльской АЭС на Украине в 1986 году, на японской АЭС «Фукусима-1» в 2011 году, не забывают также упомянуть о рисках, возникающих при выводе из эксплуатации ядерно- и радиационно-опасных объектов (ВЭ ЯРОО) и обращении с радиоактивными отходами (РАО) и отработавшим ядерным топливом (ОЯТ). Отсутствие же достаточных объемов вложений может привести к стагнации всей отрасли, о чем в 2006 году предупреждал генеральный директор «Росатома» Сергей Кириенко: «Если сегодня мы производим 16% электроэнергии в стране, то к 2030 г., если ничего не менять, будем производить 1,3% с учетом выбытия существующих мощностей АЭС России. Если продлить срок эксплуатации всех наших станций на 10-15 лет, то мы будем производить 2%, а если строить теми темпами, которыми мы строим сейчас, то к 2030 году будем производить 3,2%. В общем, можно будет констатировать, что ядерной энергетики в России просто не станет».

Во-вторых, рассказав о положительных тенденциях и долгосрочных целях, Путин, тем самым, показал будущим молодым специалистам-ядерщикам своеобразное «окно возможностей» (что, кстати, перекликается с песней «Московские окна», исполненной им на встрече) в атомной отрасли, для которой проблема качественного человеческого ресурса остается до сих пор наиболее острой. Кризис 1990-х годов поставил под сомнение востребованность инженерных специальностей, были потеряны кадры в производстве и в науке. Сейчас попытки восполнить этот пробел предпринимаются, но очень незначительные: низкие зарплаты, отсутствие эффективной системы передачи знаний, слабо прогнозируемые перспективы отталкивают молодых высококвалифицированных специалистов от работы в сфере атомной энергии. В соответствии с годовым отчетом 2012 года ОАО «Атомэнергомаш» (одного из дивизионов «Росатома») при расчете коэффициента текучести кадров в разбивке по возрастному признаку видно, что некогда передовые предприятия, стоявшие у истоков отечественной атомной промышленности, типа ОАО «Гидропресс» (опытно-конструкторское бюро), ОАО «ГСПИ» (проектно-изыскательский институт), ПАО «ЭМСС» (производитель специальных литых и кованых изделий для машиностроения), ОАО «СвердНИИхиммаш» (изготовление нестандартного оборудования) демонстрируют слабый приход сотрудников до 30 лет и от 30 до 50 лет.

Следовательно, исходя из вышесказанного, можно сделать вывод, что цели, обозначенные президентом РФ, носят преимущественно декларативный характер.

Построим ли еще 28 энергоблоков?

В выступлении Путина весьма амбициозным кажется и план по строительству 28 энергоблоков АЭС к 2030 году. Со времен Советского Союза в России функционируют 10 атомных станций (Балаковская АЭС, Белоярская АЭС, Билибинская АЭС, Калининская АЭС, Кольская АЭС, Курская АЭС, Ленинградская АЭС, Нововоронежская АЭС, Ростовская АЭС и Смоленская АЭС), и строится 10 энергоблоков, а именно:

· Белоярская АЭС (Заречный Свердловской области), энергоблок № 4, реактор БН-800, запланированная дата физического пуска – 2014 год;

· Нововоронежская АЭС-2 (Нововоронеж, Воронежская область), энергоблоки 1 и 2, реактор ВВЭР-1200 (проект «АЭС-2006»), даты пуска – 2014 и 2016 годы, соответственно;

· ЛАЭС-2 (Сосновый Бор Ленинградской области), энергоблоки 1 и 2, реактор ВВЭР-1200, даты пуска – 2015 и 2017 годы, соответственно;

· Ростовская АЭС (Волгодонск Ростовской области), энергоблоки 3 и 4, реактор ВВЭР-1000, даты пуска – 2015 и 2019 годы, соответственно;

· Балтийская АЭС (Неман Калининградской области), энергоблоки 1 и 2, реактор ВВЭР-1200, даты пуска – 2018 и 2021 годы, соответственно;

· плавучая атомная теплоэлектростанция (ПАТЭС) «Михаил Ломоносов» (предполагаемое размещение – Певек Чукотского автономного округа), реактор КЛТ-40, дата пуска – 2018 год.

Как разъяснил заместитель директора Института проблем безопасного развития атомной энергетики РАН по научной работе и координации перспективных разработок Рафаэль Арутюнян, новые АЭС сооружаются на основе российского проекта АЭС-2006 с реализацией новых пассивных систем безопасности, таких, как двойная защитная оболочка, рассчитанная на падение тяжелых самолетов, и «ловушка» для удержания топлива при любых тяжелых авариях в пределах защитной оболочки, пассивной системы отвода остаточного тепловыделения от реактора в течение более трех суток без каких‑либо источников энергообеспечения.

Однако эта «подушка безопасности» будет срабатывать, как говорит эксперт, только в случае добросовестного, проведенного по всем нормам строительства. Принимая во внимание хотя бы дефицит квалифицированных кадров и постоянно всплывающие коррупционные скандалы в «Росатоме» (дело Евгения Евстратова, завал металлоконструкций на строительстве ЛАЭС-2 по причине использования дешевого материала), о безопасности говорить не приходится. Впрочем, как и о способности построить 28 энергоблоков к 2030 году. Откладывание строительства, самого пуска АЭС для «Росатома» - обычное дело, что связано как с бюрократизацией Госкопорации (особенно в части организации единой системы закупок, якобы демонстрирующей транспарентность компании), так и с неправильными расчетами даты пуско-наладочных работ и денежных средств.

Невозможность ударными темпами проводить сооружение качественных АЭС, в чем упорно не признается Госкорпорация, дает негативные последствия. Нехватка генерирующих мощностей не только сдерживает модернизацию экономики страны, но и очевидно дает карт-бланш на продолжение эксперимента с введением «энергетических пайков» для населения. Как уверяет правительство, их выдача - один из уже распространенных в Европе способов распределения потребления дорожающей электроэнергии. Тем не менее, у председателя комитета ГосДумы по энергетике Ивана Грачева другое мнение: «Многие думают, что на каждого члена семьи будет приходиться по 50 киловатт-часов, и успокаиваются. Будь это так в действительности – не стоило бить тревогу. Всем вдалбливается цифра в 50 (или 70) киловатт-часов в месяц. И часто замалчивается, что по специальной методике, предложенной регионам Министерством энергетики, данная величина относится только к двум членам семьи. Что уже третьему члену семьи предложено будет не 50 или 70, а всего лишь 20 киловатт-часов. К тому же, если в семье больше пяти человек, то начиная с шестого, вообще ничего не добавляется, ни одного киловатта».

Расширение АЭС за рубежом заказывали?

Пока на отечественном рынке атомной энергетики дела идут не совсем в нужном ключе, «Росатом» продолжает заглядываться на международный рынок. Об этом свидетельствует недавнее знаковое событие: Владимир Путин и премьер-министр Венгрии Виктор Орбан договорились о строительстве двух энергоблоков на венгерской АЭС «Пакш» по 1,2 ГВт каждый. На эти цели Россия предоставит Венгрии госкредит в размере до 10 миллиардов евро, что составляет 80% общей стоимости. Срок выборки кредита, по словам министра финансов РФ Антона Силуанова, – 10 лет с погашением через 21 год.

Интересно, что Венгрия – далеко не единственная страна, которую Россия старается втянуть в свою зону влияния через сотрудничество в области мирного использования атомной энергии. На данный момент «Росатом» заключил контракты на возведение более 20 энергоблоков за рубежом, включая, например, АЭС «Куданкулам» в Индии, АЭС «Ханхикиви-1» в Финляндии, Тяньваньской АЭС в Китае и АЭС в Бангладеш. В своем предновогоднем интервью ИТАР-ТАСС Сергей Кириенко отметил, что разворачивание серийного сооружения атомных энергоблоков, якобы, пошло Госкорпорации на пользу – она научилась укладываться в сроки и в смету, чего не было со времен распада Советского Союза. При этом генеральный директор не упомянул одну важную деталь: российская сторона финансирует зарубежные проекты, либо предоставляя заказчикам кредиты, либо поддерживая «Росатом» за счет бюджета, хоть и дефицитного. Так, в декабре 2013 года Россия предоставила Госкорпорации субсидию в виде имущественного взноса в размере 22,5 млрд. руб. на строительство турецкой АЭС «Аккую».

Обоснование Венгрией выбора в пользу своего восточного соседа тоже не совсем понятно. В течение нескольких лет руководство страны обещали выставить энергоблоки на АЭС «Пакш» на тендер, где за право заключения договора наряду с «Росатомом» должны были побороться такие крупные компании как японо-американская Westinghouse и французская Areva. С одной стороны, согласно венгерским источникам из всех претендентов на контракт только «Росатом» готов был предоставить дополнительное финансирование, что и послужило весомым аргументом для дальнейшего подписания договора. С другой стороны, российские СМИ указывают на то, что Венгрия выбрала «Росатом», делая ставку на опыт России: венгерские делегации регулярно посещали предприятия Госкорпорации с «дежурной» целью – ознакомиться с технологиями и уровнем безопасности российских проектов.

Тем не менее, становится ясно, что Виктору Орбану деваться просто некуда. АЭС «Пакш», единственная действующая станция, вырабатывающая 42% энергии в стране, была построена по советскому проекту, и при таких обстоятельствах логично предложить, что только Россия, несмотря на все недочеты, сможет довести строительство дополнительных энергоблоков «до ума». Кроме того, учитывая непростую экономическую ситуацию в Венгрии, связанную с политикой жесткой экономии в ЕС, имидж Орбана, «борца за свободу Венгрии от ЕС», имевшего смелость приравнять политику федерального канцлера Германии Ангелы Меркель к вторжению гитлеровских войск в Венгрию в 1944 году, сотрудничать Венгрии с России просто жизненно необходимо. Насколько стратегически стабильным окажется их союз, будет видно в ближайшие полгода, пока будут готовиться контракты, а Венгрия – к парламентским выборам.

Наконец, в краткосрочной перспективе будет видно, какое же направление развития мирного атома сделает «Росатом» первостепенным – внутреннее или внешнее.

В настоящее время более 18% электроэнергии, вырабатываемой в мире, производится на ядерных реакторах, которые, к тому же, в отличие от электростанций, работающих на органическом топливе, не загрязняют атмосферу. Неоспоримый плюс ядерной энергии – ее стоимость, которая ниже, чем на большинстве электростанций иных типов. По разным оценкам, в мире насчитывается около 440 ядерных реакторов обшей мощностью свыше 365 тыс. МВт, которые расположены более чем в 30 странах.

Атомная энергетика является одним из основных мировых источников энергообеспечения. В 2000–2005 гг. в строй было введено 30 новых реакторов. Основные генерирующие мощности сосредоточены в Западной Европе и США.

Для обеспечения прогнозируемых уровней электро- и теплопотребления в максимальном варианте спроса необходим ввод генерирующих мощностей АЭС до 6 ГВт в текущем десятилетии (энергоблок 3 Калининской АЭС, энергоблок 5 Курской АЭС, энергоблок 2 Волгодонской АЭС, энергоблоки 5 и 6 Балаковской АЭС, энергоблок 4 Белоярской АЭС) и не менее 15 ГВт до 2020 года (с учетом воспроизводства энергоблоков первого поколения – 5,7 ГВт), а также до 2 ГВт АТЭЦ. В результате суммарная установленная мощность атомных станций России должна увеличиться до 40 ГВт при среднем КИУМ порядка 85% (уровень ведущих стран с развитой атомной энергетикой).

В соответствии с этим основными задачами развития атомной энергетики являются:

модернизация и продление на 10–20 лет сроков эксплуатации энергоблоков действующих АЭС;

повышение эффективности энергопроизводства и использования энергии АЭС;

создание комплексов по переработке радиоактивных отходов АЭС и системы обращения с облученным ядерным топливом;

Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ
Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ

воспроизводство выбывающих энергоблоков первого поколения, в том числе путем реновации после завершения продленного срока их эксплуатации (при своевременном создании заделов);

расширенное воспроизводство мощностей (средний темп роста – примерно 1 ГВт в год) и строительные заделы будущих периодов;

освоение перспективных реакторных технологий (БН-800, ВВЭР-1500, АТЭЦ и др.) при развитии соответствующей топливной базы.

Важнейшими факторами развития атомной энергетики являются повышение эффективности выработки энергии на АЭС за счет снижения удельных затрат на производство (внутренние резервы) и расширение рынков сбыта энергии атомных станций (внешний потенциал).

К внутренним резервам АЭС (около 20% энерговыработки) относятся:

повышение НИУМ до 85% с темпом роста в среднем до 2% в год за счет окращения сроков ремонтов и увеличения межремонтного периода, удлинения топливных циклов, снижения числа отказов оборудования при его модернизации и реновации, что обеспечит дополнительное производство электроэнергии на действующих АЭС около 20 млрд кВтч в год (эквивалентно вводу установленной мощности до 3 ГВт при удельных капитальных затратах до 150 долл./кВт);

повышение КПД энергоблоков за счет улучшения эксплуатационных характеристик и режимов с дополнительной выработкой на действующих АЭС более 7 млрд кВтч в год (равноценно вводу мощности 1 ГВт при удельных капитальных затратах порядка 200 долл./кВт);

снижение производственных издержек, в том числе за счет сокращения расхода энергии на собственные нужды (до проектных значений, составляющих около 6%) и уменьшения удельной численности персонала.

Внешний потенциал – расширение действующих и создание новых рынков использования энергии и мощности АЭС (более 20% энерговыработки):

развитие производства тепловой энергии и теплоснабжения (в том числе создание АТЭЦ), электроаккумуляция тепла для теплоснабжения крупных городов, использование сбросного низкопотенциального тепла;

Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ
перевод компрессорных станций газотранспортных систем общей мощностью более 3 ГВт на электропривод от АЭС, что обеспечит экономию газа более 7 млрд м3 в год;

развитие энергоемких производств алюминия, сжиженного газа, синтетического жидкого топлива, водорода с использованием энергии АЭС.

Достижение установленных параметров стратегического развития атомной энергетики России предусматривает реализацию:

потенциала максимального повышения эффективности АЭС, воспроизводства (реновации) и развития мощностей атомных станций;

долгосрочной инвестиционной политики в государственном атомноэнергетическом секторе экономики;

эффективных источников и механизмов достаточного и своевременного обеспечения инвестициями.

Потенциальные возможности, основные принципы и направления перспективного развития атомной энергетики России с учетом возможностей топливной базы определены Стратегией развития атомной энергетики России в первой половине XXI века, одобренной в 2000 году Правительством Российской Федерации.

Перспективы долгосрочного развития атомной энергетики связаны с реальной возможностью возобновления и регенерации ядерных топливных ресурсов без потери конкурентоспособности и безопасности атомной энергетики. Отраслевая технологическая политика предусматривает эволюционное внедрение в 2010–2030 годах новой ядерной энерготехнологий четвертого поколения на быстрых реакторах с замыканием ядерного топливного цикла и уран-плутониевым топливом, что снимает ограничения в отношении топливного сырья на обозримую перспективу.

Развитие атомной энергетики позволит оптимизировать баланс топливно-энергетических ресурсов, сдержать рост стоимости электрической и тепловой энергии для потребителей, а также будет способствовать эффективному росту экономики и ВВП, наращиванию технологического потенциала для долгосрочного развития энергетики на основе безопасных и экономически эффективных атомных станций.

Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ
6.Экология

Даже если атомная электростанция работает идеально и без малейших сбоев, ее эксплуатация неизбежно ведет к накоплению радиоактивных веществ. Поэтому людям приходится решать очень серьезную проблему, имя которой – безопасное хранение отходов.

Отходы любой отрасли промышленности при огромных масштабах производства энергии, различных изделий и материалов создают огромной проблемой. Загрязнение окружающей среды и атмосферы во многих районах нашей планеты внушает тревогу и опасения. Речь идет о возможности сохранения животного и растительного мира уже не в первозданном виде, а хотя бы в пределах минимальных экологических норм.

Радиоактивные отходы образуются почти на всех стадиях ядерного цикла. Они накапливаются в виде жидких, твердых и газообразных веществ с разным уровнем активности и концентрации. Большинство отходов являются низкоактивными: это вода, используемая для очистки газов и поверхностей реактора, перчатки и обувь, загрязненные инструменты и перегоревшие лампочки из радиоактивных помещений, отработавшее оборудование, пыль, газовые фильтры и многое другое.

Газы и загрязненную воду пропускают через специальные фильтры, пока они не достигнут чистоты атмосферного воздуха и питьевой воды. Ставшие радиоактивными фильтры перерабатывают вместе с твердыми отходами. Их смешивают с цементом и превращают в блоки или вместе с горячим битумом заливают в стальные емкости.

Труднее всего подготовить к долговременному хранению высокоактивные отходы. Лучше всего такой «мусор» превращать в стекло и керамику. Для этого отходы прокаливают и сплавляют с веществами, образующими стеклокерамическую массу. Рассчитано, что для растворения 1 мм поверхностного слоя такой массы в воде потребуется не менее 100 лет.

В отличие от многих химических отходов, опасность радиоактивных отходов со временем снижается. Бoльшая часть радиоактивных изотопов имеет период

Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ
полураспада около 30 лет, поэтому уже через 300 лет они почти полностью исчезнут. Так что для окончательного удаления радиоактивных отходов необходимо строить такие долговременные хранилища, которые позволили бы надежно изолировать отходы от их проникновения в окружающую среду до полного распада радионуклидов. Такие хранилища называют могильниками.

Необходимо учитывать, что высокоактивные отходы долгое время выделяют значительное количество теплоты. Поэтому чаще всего их удаляют в глубинные зоны земной коры. Вокруг хранилища устанавливают контролируемую зону, в которой вводят ограничения на деятельность человека, в том числе бурение и добычу полезных ископаемых.

Предлагался еще один способ решения проблемы радиоактивных отходов – отправлять их в космос. Действительно, объем отходов невелик, поэтому их можно удалить на такие космические орбиты, которые не пересекаются с орбитой Земли, и навсегда избавиться радиоактивного загрязнения. Однако этот путь был отвергнут из-за опасности непредвиденного возвращения на Землю ракеты-носителя в случае возникновения каких-либо неполадок.

В некоторых странах серьезно рассматривается метод захоронения твердых радиоактивных отходов в глубинные воды океанов. Этот метод подкупает своей простотой и экономичностью. Однако такой способ вызывает серьезные возражения, основанные на коррозионных свойствах морской воды. Высказываются опасения, что коррозия достаточно быстро нарушит целостность контейнеров, и радиоактивные вещества попадут в воду, а морские течения разнесут активность по морским просторам.

Эксплуатация АЭС сопровождается не только опасностью радиационного загрязнения, но и другими видами воздействия на окружающую среду. Основным является тепловое воздействие. Оно в полтора-два раза выше, чем от тепловых электростанций.

При работе АЭС возникает необходимость охлаждения отработанного водяного пара. Самым простым способом является охлаждение водой из реки, озера, моря или специально сооруженных бассейнов. Вода, нагретая на 5–15 °С, вновь возвращается в тот же источник. Но этот способ несет с собой опасность ухудшения экологической обстановки в водной среде в местах расположения АЭС.

Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ
Небольшие потери пополняются постоянной подпиткой свежей водой. При такой системе охлаждения в атмосферу выбрасывается огромного количество водяного пара и капельной влаги. Это может привести к увеличению количества выпадающих осадков, частоты образования туманов, облачности.

В последние годы стали применять систему воздушного охлаждения водяного пара. В этом случае нет потерь воды, и она наиболее безвредна для окружающей среды. Однако такая система не работает при высокой средней температуре окружающего воздуха. Кроме того, себестоимость электроэнергии существенно возрастает.

Заключение

Энергетическая проблема – одна из важнейших проблем, которые сегодня приходится решать человечеству. Уже стали привычными такие достижения науки и техники, как средства мгновенной связи, быстрый транспорт, освоение космического пространства. Но все это требует огромных затрат энергии. Резкий рост производства и потребления энергии выдвинул новую острую проблему загрязнения окружающей среды, которое представляет серьезную опасность для человечества.

Мировые энергетические потребности в ближайшее десятилетия будут интенсивно возрастать. Какой-либо один источник энергии не сможет их обеспечить, поэтому необходимо развивать все источники энергии и эффективно использовать энергетические ресурсы.

На ближайшем этапе развития энергетики (первые десятилетия XXI в.) наиболее перспективными останутся угольная энергетика и ядерная энергетика с реакторами на тепловых и быстрых нейтронах. Однако можно надеяться, что человечество не остановится на пути прогресса, связанного с потреблением энергии во всевозрастающих количествах.

Список используемой литературы

1) Кесслер «Ядерная энергетика» Москва: Энергоиздат, 1986 г.

2) Х. Маргулова «Атомная энергетика сегодня и завтра» Москва: Высшая школа, 1989 г.

3) Дж. Коллиер, Дж. Хьюитт «Введение в ядерную энергетику» Москва: Энергоатомиздат, 1989 г.

Изм.
Лист
№ документа
Подпись
Дата
Лист
2201.ДП.02.00.000.ПЗ


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные