Реакция нейтрализации. Реакция нейтрализации: определение, примеры, применение Что называют реакцией нейтрализации

В рассмотренных до сих пор протолитических взаимодейст­виях (ионизация слабых электролитов и гидролиз ионов солей) обязательным компонентом являлась вода, молекулы которой, проявляя свойства амфолита, выступали или донором, или ак­цептором протона, обеспечивая протекание указанных взаимо­действий. Теперь рассмотрим непосредственное взаимодействие кислот и оснований между собой, т. е. реакции нейтрализации.

Реакцией нейтрализации называется протолитическое взаимодействие кислоты и основания, в результате которого образуется соль и вода.

В зависимости от силы участвующих кислоты и основания реакция нейтрализации может быть практически необратимой или обратимой в разной степени.

При взаимодействии любой сильной кислоты с любым силь­ным основанием (щелочью) из-за того, что эти реагенты полно­стью диссоциированы на ионы, сущность такой реакции неза­висимо от природы реагентов выражается одним и тем же молекулярно-ионным уравнением:

В процессе нейтрализации сильной кислоты щелочью про­исходит изменение рН системы, соответствующее кривой ней­трализации, приведенной на рис. 8.1. Кривая нейтрализации в этом случае характеризуется большим и резким скачком рН вблизи состояния эквивалентности (Vэкв)- Середина этого скачка соответствует точке эквивалентности, в которой [Н + ] = [ОН-] = = 1 10 -7 моль/л, т. е. рН = 7.

Характерными особенностями реакции нейтрализации силь­ной кислоты щелочью и наоборот являются:

Необратимость;

Экзотермичность ( Н 0 = -57,6 кДж/моль);

Очень большая скорость, так как взаимодействуют только подвижные ионы Н + и ОН-;

Скачок рН при нейтрализации большой и резкий;

Точка эквивалентности при рН = 7.

Эти особенности реакции нейтрализации между сильными кислотами и основаниями обеспечили широкое использование ее в аналитической практике для количественного определения кислот и оснований в исследуемых объектах.

Наиболее общим случаем реакции нейтрализации является взаимодействие кислот и оснований, различающихся по силе. Рассмотрим нейтрализацию слабой кислоты НА сильным ос­нованием (щелочью):

Поскольку НА и Н 2 0 - слабые электролиты, то имеет место протолитическое равновесие из-за конкуренции за протон ме­жду сильными основаниями ОН- и А- и, следовательно, для дан­ной реакции нейтрализации будут характерны следующие осо­бенности:

Обратимость;

Скачок рН при нейтрализации небольшой и менее резкий (рис. 8.2), причем с уменьшением силы кислоты он уменьшает­ся и сглаживается;

Точка эквивалентности находится при рН > 7, так как в системе протекает реакция гидролиза по аниону с образованием анионов ОН-, которых тем больше, чем слабее кислота;

V Э KB), когда добавле­но 50 % щелочи и [НА] = [А-], значение рН в системе численно равно значению рК а данной слабой кислоты.

Последнее положение следует из уравнения: рН = рК а + lg ([А-]/[НА]), согласно которому при [А - ] = [НА] рН = рК а (так как lg ([А-]/[НА]) = 0). Это обстоятельство позволяет не только определять величину рК а слабой кислоты, но и решать обрат­ную задачу: по значению рК а определять, какая слабая кислота находится в системе.


Реакции нейтрализации различных по силе оснований сильной кислотой (рис. 8.3) характеризуются особенностями равновесных протолитических процессов, аналогичными приведенным выше. Однако нужно понять и запомнить, что для нейтрализации слабых оснований характерны следующие особенности:

-
точка эквивалентности находится при рН < 7 из-за проте­кающей параллельно реакции гидролиза по катиону с образо­ванием катионов Н + ;

В состоянии полунейтрализации (1/2 V Э KB), когда добавлено 50 % кислоты и [В] = [ВН + ], значение рН в системе численно равно значению рK а (ВН +) сопряженной кислоты данного слабо­го основания.

Таким образом, исследование реакции нейтрализации по­зволяет определять не только содержание кислот и оснований в системе, но и значение рК а слабых электролитов, включая и белки, а также их изоэлектрические точки.

Реакции нейтрализации (процесс взаимодействия кислоты и основания) сопровождаются тепловым эффектом. В результате получается соль и вода. Реакции нейтрализации протекают необратимо только в случае нейтрализации сильных кислот сильными основаниями.

например:

K + + OH - + H + + Cl - = K + + Cl - + H 2 O

Необратимость таких реакций обусловлена тем, что в образующихся системах единственным и весьма малодиссоциированным соединением является вода. Ионная форма уравнения в этом случае имеет вид.

Н + + ОН - = Н 2 О

Исключение составляют такие реакции, которые сопровождаются кроме воды образованием трудно растворимого соединения, например:

Ва 2+ + 2ОН - + 2Н + + SO 4 2- =  ВаSO 4 + 2H 2 O

При этом, если в реакции участвуют строго эквивалентные коли­чества сильной кислоты и сильной щелочи, то концентрации ионов Н + и ОН - сохраняют значения такие же как и в воде, т.е. среда становится нейтральной. Установлено, что при нейтрализации одного эквивалента сильной кислоты (щелочи) одним эквивалентом сильной щелочи (кислоты) выделяется всегда 57,22 кДж (13,7ккал). Например:

NаОН + НСl -= NаСl + Н 2 О, H= - 13,7 ккал

Это происходит потому, что реакция нейтрализации сильной кислоты (щелочи) сильной щелочью (кислотой) всегда будет сопровождаться реакцией образования воды, а теплота образования одного моля вода из ионов равна 57,22 кДж (13,7 ккал).

При нейтрализации слабой кислоты (щелочи) сильной щелочью (кислотой) будет выделяться больше или меньше,чем 57,22 кДж (13,7 ккал) количества тепла (приложение табл. I).

Примеры других типов реакции нейтрализации

    слабой кислоты сильным основанием:

СН 3 СООН + КОН  СН 3 СОOK +Н 2 О

СН 3 СООН + ОН -  СН 3 СОO - +Н 2 O

    слабого основания сильной кислотой:

NН 4 ОН + НNО 3  NH 4 NО 3 + Н 2 О

NН 4 ОН +Н +  NH 4 + +Н 2 О

3) слабого основания слабой кислотой:

NН 4 OН +СН 3 СООН  СН 3 СООNH 4 +Н 2 O

NН 4 OН +СН 3 СООН  NH 4 + + СН 3 СОО - + Н 2 O

В образующихся системах равновесие сильно смещено вправо, т.е. в сторону образования воды, но не до конца, так как вода в них не единственное малодиссоциированное вещество.

При строго эквивалентных количествах, первая система имеет слабощелочную, вторая - слабокислую, а третья - нейтраль­ную реакции. В последнем случае нейтральность системы не означает, что эта реакция протекает необратимо, а является следствием ра­венства констант диссоциации NН 4 OН и уксусной кислоты.

Задание

Опыт 1.

Нейтрализация серной кислоты едким натром в две стадии.

1) в калориметр отмерить 50мл одномолярного растворасер­ной кислоты Н 2 S0 4 ;

2) измерить температуру раствора кислоты t 1 в калоримет­ре;

3) быстро (и без потерь) влить в кислоту 25 мл двумолярного раствора щело­чи NaOH из сосуда и осторожно перемешать полученный раствор кислой соли NаHS0 4 (объем V1);

4) определить температуру t 2 раствора после реакции, которая протекает по уравнению:

H 2 SO 4 + NaOH = NaНSO 4 + H 2 O H 1 = ? (1)

где H 1 - теплота реакции;

5) определить разность температур t 1 = t 2 – t 1 и объем V 1 полученного раствора;

6) к полученному раствору NaНSO 4 быстро прилить оставшиеся 25 мл раствора щелочи, перемешать и определить температуру раствора t 3 . В данном случае кислая соль превращается в среднюю по реакции:

NaHSO 4 + NaOH = Na 2 SO 4 + H 2 O H 2 = ? (2)

где H 2 - теплота реакции;

7) определить разность температур t 2 = t 3 – t 2 и объем V 2 полученного раствора;

8) результаты опыта занести в табл. 1;

Таблица 1

________________________________________________________________

| 50 | 25 | t 1 | 1.09 (V1) | 5.02 (V1) | H 1 |

| | 25 | t 2 | 1.12 (V2) | 6.28 (V) | H 2 |

|________________________________________________________________|

Опыт 2.

Нейтрализация серной кислоты едким натром в одну стадию.

Проводить опыт в следующем порядке:

1) в калориметр отмерить 50мл одномолярного растворасер­ной кислоты Н 2 S0 4 ;

2) измерить температуру раствора кислоты t 4 в калоримет­ре;

3) быстро (и без потерь) влить в кислоту 50 мл двумолярного раствора щело­чи NaOH из сосуда и осторожно перемешать полученный раствор средней соли Nа 2 S0 4 ;

4) определить температуру t 5 раствора реакции полной нейтрализации,

H 2 SO 4 + 2 NaOH = Na 2 SO 4 + 2 H 2 O: H 3 (3)

где H 3 - теплота реакции;

5) определить разность температур t 3 = t 5 – t 4 и объем V 3 полученного раствора;

6) результаты опыта занести в табл. 2;

Таблица 2 ___

_____________________________________________________________

| Объем раствора, мл | Разность | Плотность | Теплоемкость | Наблюдаемая |

|__________________|темпера- | раствора, | Дж/(г.К) | теплота, |

| H 2 SO 4 | NaOH | тур,  С | г/моль | | кДж/моль |

|________________________________________________________________|

| 50 | 50 | t 3 | 1.12 | C3 = 6.28 | H 3 |

|________________________________________________________________|

9) вычислить энтальпию (H 1 , H 2 ,H 3) реакции нейтра­лизации по формуле:

10) вычислить суммарную теплоту H 1 + H 2 реакции ней­трализации;

11) сравнить значение суммарной теплоты реакции H 1 + H 2 со значением H 3 и сделать соответствующие выводы;

12) вычислить абсолютную и относительную ошибки определения теплоты реакции (3);

13) записать уравнение реакции (1, 2 и 3) в виде термохимических уравнений.

Результаты работы

Проведем опыт нейтрализации серной кислоты едким натром в две стадии

Таблица 1

Проведем опыт нейтрализации серной кислоты едким натром в одну стадию

по схеме описанной выше, а результаты измерений занесем в таблицу.

Таблица 2

Вычислим энтальпию (H 1 , H 2 ,H 3) реакции нейтра­лизации по формуле:

H = V * d * C * t * 10 * 0.001,

где H - соответствующая теплота реакции; V - объем полученного раствора соли, мл; d - плотность данного раст­вора, г/см 3 ; С - удельная теплоемкость раствора, Дж(ккал); t - соответствующая разность наблюдаемых температур до реак­ции и после реакции, °С; 10 - коэффициент пересчета теплоты реак­ции на один эквивалент, взятой для нейтрализации кислоты; 0,001 - коэффициент пересчета, кДж (ккал);

H 1 = 75 * 1.09 * 5.02 * * 10 * 0.001 = 40.92 кДж

H 2 = 100 * 1.12 * 6.28 * * 10 * 0.001 = 19.06 кДж

H 3 = 100 * 1.12 * 6.28 * * 10 * 0.001 = 60.77 кДж

Вычислим суммарную теплоту H 1 + H 2 реакции ней­трализации:

H 1 H 2 = 59.98 кДж

Сравнивая значение суммарной теплоты реакции H 1 + H 2 со значением H 3 видим, что они практически равны. Этот говорит о том, что тепловой эффект химической реакции, протекающей при постоянном давлении или при постоянном объеме, не зависит от пути реакции, а зависит только от природы исходных и конечных веществ и их состояния (закон Гесса).

Вычислим абсолютную и относительную ошибки определения теплоты реакции (3).

Стандартная теплота образования моля воды составляет H 0 = 57,22 кДж.

Абсолютная погрешность определения теплоты реакции:

|H 3 -H 0 | = |60,77 – 57,22| = 3,55 кДж.

Относительная погрешность определения теплоты реакции:

|H 3 -H 0 | /H 0 = 3,55/57,22 = 6,2 %

Запишем уравнения реакций (1, 2 и 3) в виде термохимических уравнений:

H 2 SO 4 + NaOH = NaНSO 4 + H 2 O, H 1 = 41 кДж;

NaHSO 4 + NaOH = Na 2 SO 4 + H 2 O, H 2 = 19 кДж;

H 2 SO 4 + 2NaOH = Na 2 SO 4 + 2H 2 O, H 3 = 61 кДж.

Вывод по работе

Основной принцип, на котором основываются все термохимические расчеты, установлен в 1840г русским химиком, академиком Г И Гессом. Этот принцип, известный под названием закона Гесса и являющейся частным случаем закона сохранения энергии, можно сформулировать так «Тепловой эффект реакции за- висит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса. И это мы доказали при приготовлении раствора сульфата натрия из растворов серной кислоты гидроксида натрия двумя способами.

Итог:

Согласно закону Гесса, тепловой эффект в обоих случаях один и тот же.

Нейтрализация – химическая реакция, происходящая между двумя составами, имеющими свойства кислоты и основания. В результате их взаимодействия происходит потеря свойств обоих веществ, что приводит к выделению соли и воды.

Сфера применения нейтрализации

Вычисления по этой реакции особенно часто используются:

  • в агрохимических лабораториях;
  • в химическом производстве;
  • при обработке отходов.

Метод нейтрализации применяется в клинических лабораториях для определения буферной емкости плазмы крови, кислотности желудочного сока. Активно используется и в фармакологии, когда нужно провести количественный анализ неорганических и органических кислот. Проводить этот процесс можно по всем правильно составленным уравнениям.

Внешние проявления нейтрализации

Процесс нейтрализации кислоты можно наблюдать, если вначале к раствору добавить несколько капель индикатора, который позволит изменить окраску раствора. Когда к этой смеси добавляется щелочь, то окраска полностью исчезает. Но стоит учитывать, что индикаторы меняют свою окраску не строго в эквивалентной точке, а с отклонением. Поэтому даже при правильном выборе индикатора допускается погрешность. Если же он был выбран неправильно, то все результаты оказываются искаженными.

В условиях школьной программы для этого применяют лимонную кислоту и нашатырный спирт. В качестве примера можно рассмотреть процесс реакции между соляной кислотой и едким натром. В результате их взаимодействия образовывается известный всем раствор пищевой соли в воде. Также в качестве индикаторов могут выступать:

  • метиловый оранжевый;
  • лакмус;
  • метиловый красный;
  • фенолфталеин.

Необходимо отметить, что реакция, обратная нейтрализации, называется гидролизом. Его результатом является образование слабой кислоты или основания.

При выборе нейтрализующего вещества обязательно учитываются:

  • промышленные свойства соединения;
  • доступность;
  • себестоимость.

Раньше в качестве нейтрализатора применяли окись магния. Сейчас она не пользуется популярностью, поскольку имеет высокую стоимость и вступает в реакцию достаточно медленно.

Виды реакции нейтрализации

В процессе взаимодействия сильного основания такой же сильной кислотой происходит смещение реакции в сторону образования воды. Вместе с тем этот процесс не доходит до конца, поскольку начинается гидролиз соли.

При нейтрализации слабой кислоты сильным основанием можно говорить об обратимой реакции. Как правило, в таких системах протекание реакции смещается в сторону образования соли, поскольку вода является более слабым электролитом, чем, например, синильная, уксусная кислота или аммиак.

Скорость процесса нейтрализации изменяется в зависимости от специфики используемых веществ. Например, при применении NaOH необходимая степень кислотности появляется практически сразу же. СаО приводит к возникновению нужной реакции только через 15-20 минут, а MgO – через 45 минут. При этом в последних двух случаях наиболее сильное понижение кислотности наблюдается в первые 5 минут после того как было внесено нейтрализующее вещество. Если скорость процесса не очень высокая, то еще больше его начинает тормозить вторичное окисление.

Выделение тепла в процессе нейтрализации

Часто это происходит под воздействием азотной кислоты. Чем выше ее количество, тем больше выделяется тепла. При получении поваренной соли воздействие тепла приводит к нежелательным последствиям, поскольку она начинает разлагаться с выделением хлора. Из-за выделения тепла можно говорить о том, что все реакции нейтрализации являются экзотермическими. Его выделение происходит из-за возникновения разницы между суммарной энергией ионов Н+ и ОН-, а также энергией образования молекул воды.

Тема урока: «Реакция нейтрализации как пример реакции обмена»

Цель урока: формировать представление о реакции нейтрализации как частном случае реакции обмена.

Задачи:

Создать условия для развития представлений о реакции нейтрализации как частном случае реакции обмена;

Расширить знания учащихся о свойствах кислот и оснований;

Продолжить развитие умений составления уравнений химических реакций;

Воспитывать наблюдательность и внимание в ходе проведения демонстрационного эксперимента.

Тип урока : комбинированный

Оборудование и реактивы : соляная кислота, растворы гидроксида натрия, гидроксида меди (II), фенолфталеин, пробирки.

Ход урока

    Организационный момент.

Ребята давайте продолжим наше путешествие по стране под название Химия. На прошлом уроке мы знакомились с городом под названием Основания и с его жителями. Основные жители данного города – это основания. Дайте определение понятию «основание». Ну а теперь давайте проверим, как вы справились с домашним заданием.

    Проверка домашнего задания.

7, 8.

    Опрос и дальнейшая актуализация знаний.

    Какие классы неорганических веществ вы знаете?

    Дайте определение понятиям «оксиды», «кислоты», «соли».

    С какими веществами реагирует вода?

    Какие вещества образуются при реакции воды с основными и кислотными оксидами?

    Как доказать, что в результате взаимодействия воды с кислотным оксидом образуется кислота?

    Что такое индикаторы?

О каком индикаторе идёт речь?

От щелочи я жёлт, как в лихорадке,

Краснею от кислот, как от стыда.

И я ищу спасительную влагу,

Чтоб не смогла заесть меня среда.

(Метилоранж.)

Попасть в кислоту для него неудача,

Но он перетерпит без вздоха и плача.

Зато в щелочах у такого блондина

Начнётся не жизнь, а сплошная малина.

(Фенолфталеин.)

    Какие ещё индикаторы вы знаете?

    Дайте определение понятиям «кислотный оксид», «основный оксид».

    На какие группы делятся основания?

    В какой цвет окрашивается фенолфталеин, метилоранж, лакмус в растворе щелочи?

    Изучение нового материала.

Вы уже знаете, что щелочи это растворимые основания, при работе с ними необходимо соблюдать особые правила безопасного поведения, так как они оказывают разъедающее действие на нашу кожу. Но их можно «обезвредить», добавив к ним раствор кислоты – нейтрализовать. И тема сегодняшнего урока: «Реакция нейтрализации как пример реакции обмена» (запись темы на доске и в тетради).

Цель сегодняшнего урока: формировать представление о реакции нейтрализации; научится записывать уравнения реакций нейтрализации.

Давайте вспомним, какие вы уже знаете типы химических реакций. Определите тип данных реакциях

Na 2 O + H 2 O = 2 NaOH

2H 2 O = 2H 2 + O 2

Zn + 2HCl =ZnCl 2 +H 2

Дайте определение данным типам реакций.

Так же вы уже знаете, что если к щелочи добавить фенолфталеин, то раствор станет малинового цвета. Но если к этому раствору добавить кислоту, окраска исчезает (дем. взаимодействия NaOH и HCl ). Это произошла реакция нейтрализации.

Запись уравнения на доске: NaOH + HCl = NaCl + H 2 O

В результате получается соль и вода.

Давайте все вместе попробуем дать определение реакции нейтрализации.

Реакция нейтрализации не относится ни к одному из известных до сих пор типов реакций. Это реакция обмена. Общая схема реакции обмена: AB +CD =AD + CB

То есть это реакция между сложными веществами, в ходе которых они обмениваются своими составными частями.

А кто знает, какая кислота находится у нас в желудке? Как вы думаете, почему при изжоге рекомендуется, если под рукой нет таблетки, выпить немного раствора соды?

Дело в том, что раствор соды тоже имеет щелочную среду и когда мы выпиваем этот раствор, происходит реакция нейтрализации. Раствор соды нейтрализует соляную кислоту, находящую в нашем желудке.

Как вы думаете, вступают ли в реакцию с кислотами нерастворимые основания? (Ответы учащихся). Дем. взаимодействия Cu(OH) 2 и HCl .

Запись уравнения на доске: Cu(OH) 2 + 2 HCl = CuCl 2 + 2 H 2 O .

    Закрепление

    Допишите следующие уравнения реакций:

а ) KOH+ H 2 SO 4 = …;

б ) Fe(OH) 2 + HCl =…;

в ) Ca(OH) 2 + H 2 SO 4 =…. .

    Какие исходные вещества необходимо взять для получения следующих солей по реакции нейтрализации: Ca ( NO 3 ) 2 ; NaI ; BaSO 4.

    Даны вещества: HCl ; H 2 SO 4 ; Fe ( OH ) 3 . Составьте уравнения всех возможных реакций нейтрализации между ними.

Физкультминутка: Учитель показывает вещества, а учащимся необходимо определить к какому классу веществ относится вещество и выполнять следующие действия: оксид – руки вверх, соль – встать, кислота – руки в стороны, основания – ничего не делать.

    Обобщение

    Закончите предложенную схему

Основные классы неорганических веществ

СО 2 ; Na 2 O ? ? ?

Н 2 SO 4 ; HCl NaOH;Ca(OH) 2 CaCl 2; Na 2 SO 4

2.Закончите нижеприведённые предложения:

Группа атомов ОН называется …..

Валентность этой группы постоянная и равна ….

Основания состоят из атомов …. и одной или нескольких …. .

К химическим свойствам оснований можно отнести их действие на … .При этом индикаторы приобретают окраску: лакмус - ….; фенолфталеин - ….; метилоранж - … .

Кроме того, основания вступают в реакцию с …. .

Эта реакция называется реакцией …

Продуктами этой реакции являются …. и …. .

Реакция обмена – это реакция между …. веществами, при которой они обмениваются своими … частями.

Реакция нейтрализации – это частный случай реакции … .

VII Рефлексия

Что на сегодняшнем уроке нового вы узнали? Достигли ли мы целей, поставленных на уроке?

    Домашнее задание: § 33 № 6, подготовится к практической работе № 6

Дополнительная информация: Знаете ли вы, что женщины Древней Руси мыли волосы раствором еловой золы или золы подсолнечника? Раствор золы мылкий на ощупь и называется «щелок». Такой раствор имеет щелочную среду, как и вещества, которые мы изучаем. По-арабски зола – «аль-кали».

Историческое названия важнейших щелочей: гидроксид натрия – едкий натр, гидроксида калия – едкий кали. Щелочи используются для производства стекла и мыла.

Загадка:

В ней металл и кислород,

Да ещё плюс водород.

И такое сочетание

Называют -….. (основание)

Леонид Чуешков

Впереди всегда здесь «аш»,

А за ним что остаётся.

Она щиплется и жжётся.

И на первый взгляд проста,

А зовётся - … (кислота)

Леонид Чуешков



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные