Рассчитать мощность теплового насоса для отопления дома. Тепловой насос своими руками для отопления частного дома. Делаем геотермальную установку

В данной статье описаны варианты отопления дома и горячего водоснабжения с помощью теплового насоса, солнечного коллектора и кавитационного теплогенератора. Дана приближенная методика расчета теплового насоса и теплогенератора. Приведены примерная стоимость затрат для обогрева дома с помощью теплового насоса.

Тепловой насос. Конструкция обогрева дома

Чтобы понять его принцип действия можно посмотреть на обычный бытовой холодильник или кондиционер.

Современные тепловые насосы используют для своей работы низкопотенциальные источники тепла землю, грунтовые воды, воздух. И в холодильнике и в тепловом насосе действует один и тот же физический принцип (физики называют такой процесс циклом Карно ). Тепловой насос - устройство, которое «выкачивает» тепло из холодильной камеры и выбрасывает его на радиатор. Кондиционер «выкачивает» тепло из воздуха комнаты и выбрасывает ее на радиатор, но находящийся на улице. При этом к теплу, «высосанному» из комнаты, добавляется ещё тепло, в которое превратилась электрическая энергия, потреблённая электродвигателем кондиционера.

Число, выражающее отношение вырабатываемой тепловым насосом (кондиционером или холодильником) тепловой энергии к потребляемой им электрической энергии, специалисты по тепловым насосам называют «отопительным коэффициентом». В лучших тепловых насосах отопительный коэффициент достигает 3-4. То есть на каждый потреблённый электродвигателем киловатт-час электроэнергии вырабатывается 3-4 киловатт-часа тепловой энергии. (Один киловатт-час соответствует 860 килокалориям.) Этот коэффициент преобразования (отопительный коэффициент) напрямую зависит от температуры источника тепла, чем выше температура источника, тем больше коэффициент преобразования.

Кондиционер берёт эту тепловую энергию из воздуха улицы, а большие тепловые насосы «выкачивают» это дополнительное тепло обычно из водоема/подземных вод или грунта.

Хотя температура этих источников гораздо меньше, чем температура воздуха в обогреваемом доме, но и это низкотемпературное тепло грунта или воды, тепловой насос и превращает в высокотемпературное , необходимое для обогрева дома. Поэтому тепловые насосы называют ещё «трансформаторами тепла». (процесс превращения см. ниже)

Примечание: Тепловые насосы не только согревают дома, но и остужают воду в реке, из которой выкачивают тепло. А в наше время, когда реки слишком перегреты промышленными и бытовыми стоками, охлаждать реку очень полезно для жизни в ней живых организмов и рыбы. Чем ниже температура воды, тем больше в ней может раствориться кислорода, необходимого для рыбы. В тёплой воде рыба задыхается, а в холодной блаженствует.Поэтому тепловые насосы очень перспективны в деле спасения окружающей среды от "теплового загрязнения ".

Но установка системы отопления с помощью тепловых насосов пока слишком дорога, потому что требуются большое количество земляных работ плюс расходных материалов, например, труб для создания коллектора/теплообменника.

Так же стоит помнить что в тепловых насосах, как и в обычных холодильниках, используется компрессор, сжимающий рабочее тело - аммиак или фреон. На фреоне тепловые насосы работают лучше, но фреон уже запрещён к применению из-за того, что он, попадая в атмосферу, выжигает в её верхних слоях озон, защищающий Землю от ультрафиолетовых лучей Солнца.

И все-таки мне кажется, что будущее за тепловыми насосами. Но их, никто пока не производит массово. Почему? Не трудно догадаться.

Если появляется альтернативный источник дешевой энергии, то куда девать добываемый газ, нефть и уголь, кому его продавать. А на что списывать многомиллиардные убытки от взрывов на шахтах и рудниках.

Принципиальная схема обогрева дома с помощью теплового насоса

Принцип действия теплового насоса

В качестве источника низкопотенциального тепла может выступать наружный воздух, имеющий температуру от -15 до +15°С, воздух отводимый из помещения с температурой 15-25°С, подпочвенные (4-10°С) и грунтовые (более 10°C) воды, озерная и речная вода (0-10°С), поверхностный (0-10°С) и глубинный (более 20 м) грунт (10°С). В Нидерландах, например, в городе Херлен (Heerlen) для этих целей используется затопленная шахта. Вода, наполняющая старую шахту, на уровне 700 метров имеет постоянную температуру в 32°C.

В случае использования в качестве источника тепла атмосферного или вентиляционного воздуха, система отопления работает по схеме «воздух-вода». Насос может быть расположен внутри или снаружи помещения. Воздух подается в его теплообменник с помощью вентилятора.

Если в качестве источника тепла используются грунтовые воды, то система работает по схеме «вода-вода». Вода подается из скважины с помощью насоса в теплообменник насоса, а после отбора тепла, сбрасывается либо в другую скважину, либо в водоем. В качестве промежуточного теплоносителя можно использовать антифриз или тосол. Если в качестве источника энергии выступает водоем, на его дно укладывается петля из металлопластиковой или пластиковой трубы. По трубопроводу циркулирует раствор гликоля (антифриз) или тосола который через теплообменник теплового насоса передает тепло фреону.

При использовании в качестве источника тепла грунта, система работает по схеме «грунт-вода». Возможны два варианта устройства коллектора - вертикальный и горизонтальный.

  • При горизонтальном расположении коллектора, металлопластиковых трубы укладывают в траншеи глубиной 1,2-1,5 м или в виде спиралей в траншеи глубиной 2-4 м. Такой способ укладки позволяет значительно уменьшить длину траншей.


Схема теплового насоса при горизонтальном коллекторе со спиральной укладкой труб

1 - тепловой насос; 2 - трубопровод, уложенный в земле; 3 - бойлер косвенного нагрева; 4 - система отопления «теплый пол»; 5 - контур подачи горячей воды.

Однако при укладке спиралью сильно увеличивается гидродинамическое сопротивление, что приводит к дополнительным затратам на прокачку теплоносителя, так же сопротивление увеличивается по мере увеличения длины труб.

  • При вертикальном расположении коллектора трубы укладывают в вертикальные скважины на глубину 20-100 м.


Схема вертикального зонда


Фото зонда в бухте


Установка зонда в скважину

Расчет горизонтального коллектора теплового насоса

Расчет горизонтального коллектора теплового насоса.

q - удельный теплосъем (с 1 м пог. трубы).

  • сухой песок - 10 Вт/м,
  • сухая глина - 20 Вт/м,
  • влажная глина - 25 Вт/м,
  • глина с большим содержанием воды - 35 Вт/м.

Между прямой и обратной петлей коллектора появляется разность температур теплоносителя.

Обычно для расчета ее принимают равной 3°С. Недостатком такой схемы является то, что на участке над коллектором не желательно возводить строений, чтобы тепло земли пополнялось за счет солнечной радиации. Оптимальная дистанция между трубами считается 0,7-0,8 м. При этом длина одной траншеи выбирается от 30 до 120 м.

Пример расчета теплового насоса

Я приведу примерный расчет теплового насоса для нашего экодома, описанного в статье .

Считается, что для обогрева дома с высотой потолка 3 м, необходимо расходовать 1 кВт. Тепловой энергии на 10 м2 площади. При площади дома 10х10м=100 м2, необходимо 10кВт тепловой энергии.

При использовании теплого пола, температура теплоносителя в системе, должна быть 35°С, а минимальная температура теплоносителя - 0°С.

Таблица 1. Данные теплового насоса Thermia Villa.

Для обогрева здания нужно выбирать тепловой насос мощностью 15,6 кВт (ближайший больший типоразмер), расходующий на работу компрессора 5 кВт. Выбираем по типу грунта теплосъем с поверхностного слоя грунта. Для (влажной глины) q равняется 25 Вт/м.

Рассчитаем мощность теплового коллектора:

Qo=Qwp-P, где

Qo - мощность теплового коллектора , кВт;

Qwp - мощность теплового насоса , кВт;

P - электрическая мощность компрессора , кВт.

Требуемая тепловая мощность коллектора составит:

Qo=15,6-5=10,6 кВт;

Теперь определим суммарную длину труб:

L=Qo/q, где q - удельный (с 1 м. пог. трубы) теплосъем, кВт/м.

L=10,6/0,025 = 424 м.

Для организации такого коллектора потребуется 5 контуров длиной по 100 м. Исходя из этого, определим необходимую площадь участка для укладки контура.

A=Lхda, где da - расстояние между трубами (шаг укладки), м.

При шаге укладки 0,75 м необходимая площадь участка составит:

А=500х0,75=375 м2.

Расчет вертикального коллектора

При выборе вертикального коллектора, бурят скважины глубиной от 20 до 100 м. В них погружаются U-образные металлопластиковые или пластиковые трубы. Для этого в одну скважину вставляется две петли, которые заливается цементным раствором. Удельный теплосъем такого коллектора составляет 50 Вт/м.

Для более точных расчетов применяют следующие данные:

  • сухие осадочные породы - 20 Вт/м;
  • каменистая почва и насыщенные водой осадочные породы - 50 Вт/м;
  • каменные породы с высокой теплопроводностью - 70 Вт/м;
  • подземные воды - 80 Вт/м.

На глубинах более 15 м, температура грунта составляет примерно +10°С. Необходимо учитывать, что расстояние между скважинами должно быть больше 5 м. Если в грунте существуют подземные течения, то скважины необходимо бурить перпендикулярной потоку.

Пример: L=Qo/q=10,6/0,05=212 м.

Таким образом, при удельном теплосъеме вертикального коллектора 50 Вт/м и требуемой мощности 10,6 кВт длина трубы L должна составить 212 м.

Для устройства коллектора необходимо пробурить три скважины глубиной по 75 м. В каждой из них размещаем по две петли из металлопластиковой трубы всего - 6 контуров по 150 м.

Работа теплового насоса при работе по схеме «Грунт-вода»

Трубопровод укладывается в землю. При прокачивании через него теплоносителя, последний нагревается до температуры грунта. Дальше по схеме вода поступает в теплообменник теплового насоса и отдает все тепло во внутренний контур теплового насоса.

Во внутренний контур теплонасоса закачан хладагент под давлением. В качестве хладагента используется фреон или его заменители, поскольку фреон разрушает озоновый слой атмосферы и запрещен к использованию в новых разработках. У хладагента низкая температура кипения и поэтому когда в испарителе резко снижается давление, он переходит из жидкого состояния в газ при низкой температуре.

После испарителя газообразный хладагент поступает в компрессор и сжимается компрессором. При этом он разогревается, и давление его повышается. Горячий хладагент поступает в конденсатор, где протекает теплообмен между ним и теплоносителем из обратного трубопровода. Отдавая свое тепло, хладагент охлаждается и переходит в жидкое состояние. Теплоноситель поступает в отопительную систему и снова охлаждаясь, передает свое тепло в помещение. Когда хладагент проходит через редукционный клапан ,его давление падает, и он снова переходит в жидкую фазу. После этого цикл повторяется.

В холодное время года теплонасос работает как обогреватель, а в жаркое время может использоваться для охлаждения помещения (при этом тепловой насос не подогревает, а охлаждает теплоноситель - воду. А охлажденная вода, в свою очередь может использоваться для охлаждения воздуха в помещении).

В общем случае, теплонасос представляет собой машину Карно, работающую в обратном направлении. Холодильник перекачивает тепло из охлаждаемого объема в окружающий воздух. Если поместить холодильник на улице, то, извлекая тепло из наружного воздуха и передавая его вовнутрь дома, то можно таким нехитрым способом, в какой-то степени, обогревать помещение.

Однако, как показывает практика, одного лишь теплового насоса для снабжения дома теплом и горячей водой недостаточно. Осмелюсь предложить оптимальную, на мой взгляд, схему отопления и горячего водоснабжения дома.


Предлагаемая схема снабжения дома теплом и горячей водой

1 - теплогенератор; 2 - солнечный коллектор; 3 - бойлер косвенного нагрева; 4 - тепловой насос; 5 - трубопровод в земле; 6 - циркуляционный блок гелиосистемы; 7 - радиатор отопления; 8 - контур подачи горячей воды; 9 - система отопления «теплый пол».

Данная схема предполагает одновременное использование трех источников тепла. Основную роль играет в ней теплогенератор (1), тепловой насос (4) и солнечный коллектор (2), которые служат вспомогательными элементами и способствуют снижению затрат потребляемой электроэнергии, как следствие, и повышению эффективности нагрева. Одновременное использование трех источников нагрева практически полностью исключает опасность размерзания системы .

Ведь вероятность выхода из строя одновременно и теплогенератора, и теплового насоса, и солнечного коллектора ничтожно мала. На схеме показаны два варианта обогрева помещений: радиаторы (7) и «теплый пол» (9). Это не значит, что надо использовать оба варианта, а лишь иллюстрирует возможность использования и одного и второго.

Принцип работы схемы отопления

Теплогенератор (1) подает нагретую воду в бойлер (3) и контур, состоящий из радиаторов отопления (7). Также в бойлер поступает нагретый теплоноситель от теплового насоса (4) и солнечного коллектора (2). Часть нагретой тепловым насосом воды также подается на вход теплогенератора. Смешиваясь с «обраткой» обогревающего контура, она повышает ее температуру. Это способствует более эффективному нагреву воды в кавитаторе теплогенератора. Нагретая и накопленная в бойлере вода подается в контур системы «теплый пол» (9) и контур подачи горячей воды (8).

Конечно, эффективность данной схемы будет неодинаковой в различных широтах. Ведь солнечный коллектор будет иметь наибольшую эффективность в летнее время года и, конечно же, в солнечную погоду. В наших широтах летом отапливать жилые помещения нет необходимости, поэтому теплогенератор можно вообще отключить. А так как лето у нас довольно жаркое и мы уже с трудом представляем свой быт без кондиционера, то тепловой насос предполагается включить на режим охлаждения. Естественно трубопровод, идущий от теплового насоса к бойлеру, будет перекрыт. Таким образом решать задачу горячего водоснабжения предполагается только с помощью гелиосистемы. И лишь в случае, если гелиосистема не справляется с этой задачей, использовать теплогенератор.

Как видим, схема довольно сложная и дорогостоящая. Общие приблизительные затраты в зависимости от выбранной схемы приведены ниже.

Затраты для вертикального коллектора:

  • Тепловой насос 6000 €;
  • Буровые работы 6000 €;
  • Эксплуатационные расходы (электричество): около 400 € в год.

Для горизонтального коллектора:

  • Тепловой насос 6000 €;
  • Буровые работы 3000 €;
  • Эксплуатационные расходы (электричество): около 450 евро в год.

Из крупных затрат потребуются расходы на закупку труб и на оплату труда рабочих.

Установка плоского солнечного коллектора (например, Vitosol 100-F и водонагревателя 300 л) обойдется в 3200 €.

Поэтому давайте, пойдем от простого к сложному. Сначала соберем простую схему отопления дома на основе теплогенератора, отладим ее, и постепенно будем добавлять в неё новые элементы, позволяющие увеличивать КПД установки.

Соберем систему отопления по схеме:


Схема теплоснабжения дома с использованием теплогенератора

1 - теплогенератор; 2 - бойлер косвенного нагрева; 3 - система отопления «теплый пол»; 4 - контур подачи горячей воды.

В итоге мы получили простейшую схему теплоснабжения дома, Я поделился своими мыслями для того, что бы побудить инициативных людей к развитию альтернативных источников энергии. Если у кого-то возникнут идеи или возражения по поводу написанного выше, давайте делиться мыслями, давайте накапливать знания и опыт в данном вопросе, и мы сбережем нашу экологию и сделаем жизнь немножко лучше.

Как видим здесь основной и единственный элемент, нагревающий теплоноситель, - это теплогенератор. Хотя в схеме и предусмотрен лишь один источник нагрева, она предусматривает возможность дальнейшего добавления дополнительных нагревательных устройств. Для этого предполагается использование бойлера косвенного нагрева с возможностью добавления или извлечения теплообменников.

Использование радиаторов отопления, имеющихся в схеме, изображенной на рисунке на один выше, не предполагается. Как известно система «теплый пол» более эффективно справляется с задачей обогрева помещений и позволяет экономить затрачиваемую энергию.

Внимание: Цены актуальны на 2009 год.

Использование низкопотенциального тепла окружающей среды для подогрева воды и отопления становится экономически выгодным при длительном использовании системы. Преградой широкому распространению подобных устройств является высокая начальная стоимость оборудования и его установки. Поэтому всегда актуален полный или частичный монтаж теплового насоса своими руками, позволяющий сэкономить значительные средства.

Рис. 1 Тепловой насос вода-вода в доме

При создании тепловых насосов для отопления используется природное низкопотенциальное тепло воздушных масс, почвы и воды. Водяные виды поглощают тепловую энергию из скважин, колодцев, прудов и других открытых водоемов. Тепловой насос работает подобно холодильнику, который забирает тепло из холодильной камеры и выводит его наружу через внешний радиатор.

При монтаже первичный теплообменник с циркулирующим теплоносителем помещают в емкость с водой, из которой забирается тепло. Вода всасывается водяной помпой, проходит по системе труб и далее поступает в испаритель — в устройстве при нагреве жидкости происходит ее испарение. В испарителе теплоноситель передает тепло фреону, для которого небольшая положительная температура 6 — 8 С является точкой кипения, и газообразный хладагент поступает в компрессор.


Рис.2.Схема теплового насоса вода-вода

Там происходит его сжатие, приводящее к повышению температуры газа, и дальнейшая подача в конденсатор. В конденсаторе тепловая энергия от газа с температурой 40 — 70 С передается воде в системе отопления, охлажденный газ конденсируется и попадает в редукционный клапан (дроссель). Его давление понижается — это приводит к большему охлаждению газа до жидкообразного состояния, в котором он снова подается в испаритель. Система работает в круговом замкнутом циклическом режиме.

Расчет теплового насоса

Для конструкции системы своими руками в первую очередь необходимо выполнить расчет с учетом потребностей в тепловой энергии (насосы могут дополнительно использоваться для обеспечения горячего водоснабжения дома) и возможных потерь. Алгоритм расчета состоит из следующих операций.

  1. Вычисляется площадь отапливаемого помещения.
  2. Основываясь на полученных значениях определяется общее количество энергии, необходимой для отопления исходя из расчета 70 — 100 ватт на квадратный метр. Параметр зависит от высоты потолков, материала изготовления и степени теплопроводности дома.
  3. При обеспечении горячего водоснабжения полученное значение увеличивают на 15 — 20 %.
  4. Исходя из полученной мощности выбирается компрессор, производится расчет и проектирование основных узлов системы: трубопроводной магистрали, испарителя, конденсатора, электрической помпы и других узлов.

Комплектующие для системы отопления с тепловым насосом при самостоятельном изготовлении

Обычному домовладельцу довольно сложно конкурировать с промышленными тепловыми насосами отечественного и зарубежного производителя, тем не менее его монтаж и изготовление отдельных узлов не являются невыполнимыми работами. Основной задачей при устройстве теплового насоса остается правильность расчетов, ведь при ошибке система может иметь низкий КПД и стать неэффективной.

Компрессор

Для монтажа понадобится новый или б.у. компрессор в рабочем состоянии с невыработанным ресурсом подходящей мощности. Обычная мощность компрессора должна составлять 20 — 30% от расчетной, можно использовать стандартные заводские агрегаты для холодильников или кондиционеров спирального принципа действия, обладающие более высоким КПД по сравнению с поршневыми устройствами.

Испаритель и конденсатор

Для охлаждения и нагрева жидкостей их обычно пропускают через медные трубы, помещенные в емкость с теплообменником. Для увеличения площади охлаждения медная труба располагается в виде спирали, необходимая длина рассчитывается по формуле вычисления площади с делением на сечение. Объем теплообменного бака рассчитывается исходя из реализации эффективного теплообмена, обычное среднее значение — около 120 л. Для теплового насоса рационально использовать трубы для кондиционеров, которые изначально имеют спиральную форму и реализуются в бухтах.


Рис. З Медная труба и бак для теплообменника

Данный способ конструкции теплообменников многие изготовители тепловых насосов своими руками заменили на более компактный, используя теплообмен по принципу «труба в трубе». Стандартный диаметр пластиковой трубы для испарителя — 32 мм., в нее помещается медная труба диаметром 19 мм., испаритель термоизолируется, общая длина теплообменника около 10 — 12 м. Для конденсатора можно использовать 25 мм. металлопластиковую трубу и 12,7 мм. медную.


Рис 4. Сборка и внешний вид теплообменника из медных и пластиковых труб

Для увеличения площади и эффективности работы теплообменника некоторые умельцы скручивают косу из нескольких медных труб малого диаметра, перекладывают их тонкой проволокой и помещают конструкцию в пластик. Это позволяет получить на 10-метровом отрезке площадь теплообмена около 1 кубического метра.

Терморегулирующий вентиль

Правильно подобранное устройство регулирует степень заполнения испарителя и в большой степени отвечает за производительность всей системы. К примеру, если поступление хладагента слишком велико, он не успеет полностью испариться, и в компрессор будут попадать капли жидкости, приводящие к нарушению его работы и понижению температуры газа на выходе. Слишком малое количество фреона в испарителе после увеличения температуры в компрессоре будет недостаточно для прогрева необходимого объема воды.


Рис. 5 Основное оборудование для теплонасоса

Датчики

Для удобства пользования, контроля работы, обнаружения неисправностей и настройки системы необходимо наличие встроенных температурных датчиков. Информация важна на всех этапах функционирования системы, только с ее помощью по формулам можно установить важнейший параметр смонтированного оборудования для водяных тепловых насосов — показатель эффективности СОР.

Насосное оборудование

При работе тепловых насосов забор и подача воды из скважины, колодца или открытого водоема происходит при помощи водяных помп. Могут использоваться погружные или поверхностные виды, обычно их мощность невелика, для подачи воды достаточно 100 — 200 Вт. Для контроля работы, защиты насосов и системы дополнительно монтируются фильтры, манометр, водяные счетчики и простейшая автоматика.


Рис. 6 Внешний вид собранного своими руками теплонасоса

Сборка теплового насосного оборудования своими руками не представляет больших трудностей при умении обращаться со специальным инструментом для сварки и пайки меди. Выполненная работа поможет сэкономить значительные средства – затраты на комплектующие составят около 600 у. е., покупка промышленного оборудования обойдется в 10 раз дороже (около 6000 у. е.). Собранная своими руками конструкция при правильном расчете и настройке имеет эффективность (СОР) около 4, что соответствует промышленным образцам.

Как известно, тепловые насосы используют бесплатные, возобновляемые источники энергии: низкопотенциальное тепло воздуха, грунта, подземных, открытых незамерзающих водоемов, сточных и сбросовых вод и воздуха, а также сбрасываемое тепло технологических предприятий. Для того чтобы это собрать затрачивается электроэнергия, но отношение количества получаемой тепловой энергии к количеству расходуемой электрической составляет порядка 3-7 раз.

Если говорить только об окружающих нас источниках низкопотенциального тепла для использования в отопительных целях, это; наружный воздух температурой от -3 до +15 °С, отводимый из помещения воздух (15-25 °С), подпочвенные (4-10 °С) и грунтовые (около 10 °C) воды, озерная и речная вода (5-10 °С), грунтовой поверхностный (ниже точки промерзания) (3-9°С) и земельный глубинный (более 6 м - 8 о С).

Отбор тепла из окружающей среды (внутренний округ).

В испарителе прокачивается жидкая рабочая среда-хладагент, при низком давлении. Тепловой уровень температур окружающий испаритель, выше соответствующей температуры кипения рабочей среды (хладагент подбирается такой, что может закипать даже при минусовой температуре). За счет этого перепада температур происходит передача тепла окружающей среды, рабочей среде, которая при этих температурах закипает и испаряется (превращается в пар). Требуемое для этого тепло отбирается от любого выше перечисленного низкопотенциального источника тепла.

Более подробно об восполняемых источниках энергии

Если в качестве источника тепла выбран атмосферный или вентиляционный воздух, применяются тепловые насосы, работающие по схеме «воздух-вода». Насос может быть расположен внутри или снаружи помещения, с встроенным или выносным конденсатором. Воздух продувается через теплообменник (испаритель) с помощью вентилятора.

В качестве источника низкопотенциальной тепловой энергии могут использоваться подземные воды с относительно низкой температурой либо грунт поверхностных слоев земли. Теплосодержание грунтового массива в общем случае выше. Тепловой режим грунта поверхностных слоев земли формируется под действием двух основных факторов - падающей на поверхность солнечной радиации и потоком радиогенного тепла из земных недр. Сезонные и суточные изменения интенсивности солнечной радиации и температуры наружного воздуха вызывают колебания температуры верхних слоев грунта. Глубина проникновения суточных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в зависимости от конкретных почвенно-климатических условий колеблется в пределах от нескольких десятков сантиметров до полутора метров. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15-20 м.

Виды горизонтальных теплообменников:

  1. теплообменник из последовательно соединенных труб;
  2. теплообменник из параллельно соединенных труб;
  3. горизонтальный коллектор, уложенный в траншее;
  4. теплообменник в форме петли;
  5. теплообменник в форме спирали, расположенной горизонтально (так называемый «slinky» коллектор);
  6. теплообменник в форме спирали, расположенной вертикально.

Вода хорошо аккумулирует солнечное тепло. Даже в холодный зимний период грунтовые воды имеют постоянную температуру от +7 до +12°C. В этом заключается преимущество данного источника тепла. Вследствии постоянного температурного уровня, этого источник тепла имеет высокий коэффициент преобразования через тепловой насос в течение всего года. К сожалению, грунтовые воды не везде имеются в достаточном количестве. При использовании в качестве источника грунтовые воды, подача осуществляется из скважины с помощью погружного насоса на вход в теплообменник (испаритель) теплового насоса, работающего по схеме «вода-вода/открытая система», с выхода теплообменника вода, либо закачивается в другую скважину, либо сбрасывается в водоем. Достоинством открытых систем является возможность получения большого количества тепловой энергии при относительно низких затратах. Однако скважины требуют обслуживания. Кроме этого, использование таких систем возможно не во всех местностях. Главные требования к грунту и грунтовым водам таковы:
- достаточная водопроницаемость грунта, позволяющая пополняться запасам воды;
- хороший химический состав грунтовых вод (например, низкое железосодержание), позволяющий избежать проблем, связанных с образованием отложений на стенках труб и коррозией.

Открытые системы чаще используются для тепло- или холодоснабжения крупных зданий. Самая большая в мире геотермальная теплонаносная система использует в качестве источника низкопотенциальной тепловой энергии грунтовые воды. Эта система расположена в США в г. Луисвилль (Louisville), штат Кентукки. Система используется для тепло- и холодоснабжения гостинично-офисного комплекса; ее мощность составляет примерно 10 МВт.

Возьмем другой источник - водоем, на его дно можно укладывать петли из пластиковой трубы, схема «вода-вода/закрытая система». По трубопроводу циркулирует раствор этиленгликоля (антифриз), который через теплообменник (испаритель) теплового насоса передает тепло хладагенту.
Грунт обладает способностью аккумулировать солнечную энергию в течение длительного периода времени, что обеспечивает сравнительно равномерную температуру источника тепла в течении года и, тем самым, высокий коэффициент преобразования теплового насоса. Температура в верхних слоях почвы меняется в зависимости от сезона. Ниже границы замерзания эти температурные колебания значительно снижаются. Накопленное в грунте тепло извлекается посредством горизонтально проложенных герметичных теплообменников, называемых также земельными коллекторами, или посредством вертикально проложенных теплообменников, так называемых геотермальными зондами. Тепло окружающей среды передается смесью воды и этиленгликоля (рассолом или медиумом), температура замерзания которого должна составлять примерно -13°C (принять во внимание данные изготовителя). Благодаря этому рассол не замерзает в процессе работы.
Значит, возможны два варианта получения низкопотенциального тепла из грунта. Горизонтальная укладка пластиковых труб в траншеи глубиной 1,3-1,7 м, в зависимости от климатических условий местности, либо вертикальные скважины глубиной 20-100 м. Укладку труб в траншеи, можно производить и в виде спиралей, но с глубиной укладки 2-4 м, это значительно уменьшит общую длину траншей. Максимальная теплоотдача поверхностного грунта составляет от 7 до 25 Вт с м.п., с геотермального 20-50 Вт с м.п. По данным компаний производителей, срок службы траншей и скважин составляет более 100 лет.

Немного подробнее о вертикальных грунтовых теплообменниках.

С 1986 года в Швейцарии, недалеко от Цюриха, проводились исследования системы с вертикальными грунтовыми теплообменниками . В грунтовом массиве был устроен вертикальный грунтовой теплообменник коаксиального типа глубиной 105 м. Этот теплообменник использовался в качестве источника низкопотенциальной тепловой энергии для теплонаносной системы, установленной в одноквартирном жилом доме. Вертикальный грунтовой теплообменник обеспечивал пиковую мощность примерно 70 Вт на каждый метр длины, что создавало значительную тепловую нагрузку на окружающий грунтовой массив. Годовое производство тепловой энергии составляет около 13 МВт.ч.
На расстоянии 0,5 и 1 м от основной скважины были пробурены две дополнительных, в которых на глубине в 1, 2, 5, 10, 20, 35, 50, 65, 85 и 105 м установлены датчики температуры, после чего скважины были заполнены глинисто-цементной смесью. Температура измерялась каждые тридцать минут. Кроме температуры грунта фиксировались и другие параметры: скорость движения теплоносителя, потребление энергии приводом компрессора температура воздуха и т. п.

Первый период наблюдений продолжался с 1986 по 1991 год. Измерения показали, что влияние тепла наружного воздуха и солнечной радиации отмечается в поверхностном слое грунта на глубине до 15 м. Ниже этого уровня тепловой режим грунта формируется главным образом за счет тепла земных недр. За первые 2-3 года эксплуатации температура грунтового массива, окружающего вертикальный теплообменник, резко понизилась, однако с каждым годом понижение температуры уменьшалось, и через несколько лет система вышла на режим, близкий к постоянному, когда температура грунтового массива вокруг теплообменника стала ниже первоначальной на 1-2 °C.

Осенью 1996 года, через десять лет после начала эксплуатации системы, измерения были возобновлены. Эти измерения показали, что температура грунта существенным образом не изменилась. В последующие годы были зафиксированы незначительные колебания температуры грунта в пределах 0,5 °C в зависимости от ежегодной отопительной нагрузки. Таким образом, система вышла на квазистационарный режим после первых нескольких лет эксплуатации.

На основании экспериментальных данных были построены математические модели процессов, проходящих в грунтовом массиве, что позволило сделать долгосрочный прогноз изменения температуры грунтового массива.

Математическое моделирование показало, что ежегодное понижение температуры будет постепенно уменьшаться, а объем грунтового массива вокруг теплообменника, подверженного понижению температуры, с каждым годом будет увеличиваться. По окончании периода эксплуатации начинается процесс регенерации: температура грунта начинает повышаться. Характер протекания процесса регенерации подобен характеру процесса "отбора" тепла: в первые годы эксплуатации происходит резкое повышение температуры грунта, а в последующие годы скорость повышения температуры уменьшается. Продолжительность периода "регенерации" зависит от продолжительности периода эксплуатации. Эти два периода примерно одинаковы. В рассматриваемом случае период эксплуатации грунтового теплообменника равнялся тридцати годам, и период "регенерации" также оценивается в тридцать лет

Таким образом, системы тепло- и холодоснабжения зданий, использующие низкопотенциальное тепло земли, представляют собой надежный источник энергии, который может быть использован повсеместно. Этот источник может использоваться в течение достаточно длительного времени и может быть возобновлен по окончании периода эксплуатации.

Расчет горизонтального коллектора теплового насоса

Съем тепла с каждого метра трубы зависит от многих параметров: глубины укладки, наличия грунтовых вод, качества грунта и т.д. Ориентировочно можно считать, что для горизонтальных коллекторов он составляет 20 Вт.м.п. Более точно: сухой песок - 10, сухая глина - 20, влажная глина - 25, глина с большим содержанием воды - 35 Вт.м.п. Разницу температуры теплоносителя в прямой и обратной линии петли при расчетах, принимают обычно 3 °С. На участке коллектора, не следует возводить строений, чтобы тепло земли, т.е. наш источник энергии, пополнялся энергией за счет солнечной радиации.

Минимальное расстояние между проложенными трубами должно быть не менее 0,7-0,8 м. Длина одной траншеи может колебаться от 30 до150м., важно чтобы длины подключаемых контуров были примерно одинаковыми. В качестве теплоносителя первичного контура рекомендуется использовать раствор этиленгликоля (медиум) с точкой замерзания примерно -13 о С. В расчетах следует учесть, что теплоемкость раствора при температуре 0°С составляет 3,7 кДж/(кг·К), а плотность - 1,05 г/см 3 . При использовании медиума, потеря давления в трубах в 1,5 раза больше, чем при циркуляции воды. Для расчета параметров первичного контура теплонасосной установки потребуется определить расход медиума:

Vs = Qo·3600 / (1,05·3,7·.t),
где.t - разность температур между подающей и возвратной линиями, которую часто принимают равной 3 о К. Тогда Qo - тепловая мощность, получаемая от низкопотенциального источника (грунт). Последняя величина рассчитывается как разница полной мощности теплового насоса Qwp и электрической мощности, затрачиваемой на нагрев хладагента P:

Qo = Qwp - P, кВт.

Суммарная длина труб коллектора L и общая площадь участка под него A рассчитываются по формулам:

Здесь q - удельный (с 1 м трубы) теплосъем; da - расстояние между трубами (шаг укладки).

Пример расчета. Теплового Насоса .
Исходные условия: теплопотребность коттеджа площадью 120-240 м2 (из расчета тепловых потерь с учетом инфильтрации) - 13 кВт; температура воды в системе отопления принимаем равной 35 °С (подполовой обогрев); минимальная температура теплоносителя на выход в испаритель - 0 °С. Для обогрева здания выбран тепловой насос мощностью 14,5 кВт из существующего технического ряда оборудования, с учетом потерь на вязкости медиума, при отборе и передаче тепловой энергии из грунта, составляет 3,22 кВт. Теплосъем с поверхностного слоя грунта (сухая глина), q равняется 20 Вт/м.п. В соответствии с формулами рассчитываем:

1) требуемая тепловая мощность коллектора Qo = 14,5 - 3,22 = 11,28 кВт;
2) суммарную длину труб L = Qo/q = 11,28/0,020 = 564 м.п. Для организации такого коллектора потребуется 6 контуров длиной по 100 м;
3) при шаге укладки 0,75 м необходимая площадь участка А = 600 х 0,75 = 450 м2;
4) общая заправка этиленгликолевого раствора Vs = 11,28·3600/ (1,05·3,7·3) = 3,51 м3, в один контур равен 0,58 м3.

Для устройства коллектора выбираем пластиковую трубу типоразмера 32х3. Потери давления в ней составят 45 Па/м.п.; сопротивление одного контура - примерно 7 кПа; скорость протока теплоносителя - 0,3 м/с.

Расчет зонда

При использовании вертикальных скважин глубиной от 20 до 100 м в них погружаются U-образные пластиковые (при диаметрах от 32 мм) трубы. Как правило, в одну скважину вставляется две петли, с заливкой суспенсным раствором. В среднем удельный теплосъем такого зонда можно принять равным 50 Вт/м.п. Можно также ориентироваться на следующие данные по теплосъему:

  • сухие осадочные породы - 20 Вт/м;
  • каменистая почва и насыщенные водой осадочные породы - 50 Вт/м;
  • каменные породы с высокой теплопроводностью - 70 Вт/м;
  • подземные воды - 80 Вт/м.

Температура грунта на глубине более 15 м постоянна и составляет примерно +9 °С. Расстояние между скважинами должно быть более 5 м. При наличии подземных течений, скважины должны располагаться на линии, перпендикулярной потоку.
Подбор диаметров труб проводится исходя из потерь давления для требуемого расхода теплоносителя. Расчет расхода жидкости может проводиться для t = 5 °С.

Пример расчета.

Исходные данные - те же, что и в приведенном выше расчете горизонтального коллектора. При удельном теплосъеме зонда 50 Вт/м и требуемой мощности 11,28 кВт длина зонда L должна составить 225 м.
Для устройства коллектора необходимо пробурить три скважины глубиной по 75 м. В каждой из них размещаем по две петли трубы типоразмера 32х3; всего - 6 контуров по 150 м.

Общий расход теплоносителя при.t = 5 °С составит 2,1 м3/ч; расход через один контур - 0,35 м3/ч. Контуры будут иметь следующие гидравлические характеристики: потери давления в трубе - 96 Па/м (теплоноситель - 25-процентный раствора этиленгликоля); сопротивление контура - 14,4 кПа; скорость потока - 0,3 м/с.

Выбор оборудования

Поскольку температура антифриза может изменяться (от -5 до +20 °С) в первичном контуре теплонасосной установки необходим гидравлический расширительный бак.
Рекомендуется также установить на отопительной (конденсаторной) линии теплового насоса накопительный бак: компрессор теплового насоса работает в режиме «включено-выключено». Слишком частые пуски могут привести к ускоренному износу его деталей. Бак полезен и как аккумулятор энергии - на случай отключения электроэнергии. Его минимальный объем принимается из расчета 20-30 л на 1 кВт мощности теплового насоса.

При использовании биваленции, второго источника энергии (электрического, газового, жидко- или твердотопливного котла), он подключается к схеме через аккумуляторный бак, являющимся еще и термогидрораспределителем, включение котла управляется тепловым насосом или верхним уровнем системой автоматики.
В случае возможных отключений электроэнергии можно увеличить мощность устанавливаемого теплового насоса на коэффициент, рассчитываемый по формуле: f = 24/(24 - t откл), где t откл - продолжительность перерыва в электроснабжении.

В случае возможного отключения электроэнергии на 4 ч этот коэффициент будет равен 1,2.
Мощность теплового насоса можно подбирать исходя из моновалентного или бивалентного режима его работы. В первом случае предполагается, что тепловой насос используется как единственный генератор тепловой энергии.

Следует принимать во внимание: даже в нашей стране продолжительность периодов с низкой температурой воздуха составляет небольшую часть отопительного сезона. Например, для Центрального региона России время, когда температура опускается ниже -10 °С, составляет всего 900 ч (38 сут), в то время, как продолжительность самого сезона - 5112 ч, а средняя температура января составляет примерно -10 °С. Поэтому наиболее целесообразным является работа теплового насоса в бивалентном режиме, предусматривающая включение дополнительного источника в периоды, когда температура воздуха опускается ниже определенной: -5 °С - в южных регионах России, -10 °С - в центральных. Это позволяет снизить стоимость теплового насоса и, особенно, работ по монтажу первичного контура (прокладка траншей, бурение скважин и т.п.), которая сильно увеличивается при возрастании мощности установки.

В условиях Центрального региона России для примерной оценки при подборе теплового насоса, работающего в бивалентном режиме, можно ориентироваться на соотношение 70/30: 70 % потребности в тепле покрывают тепловым насосом, а оставшиеся 30 - электрическим или другим источником тепловой энергии. В южных регионах можно руководствоваться соотношением мощности теплового насоса и дополнительного источника тепла, часто используемым в Западной Европе: 50 на 50.

Для коттеджа площадью 200 м2 на 4 человек при тепловых потерях 70 Вт/м2 (при расчете на -28 °С наружной температуры воздуха) потребность в тепле будет 14 кВт. К этой величине следует добавить 700 Вт на приготовление санитарной горячей воды. В результате необходимая мощность теплового насоса составит 14,7 кВт.

При возможности временного отключения электричества нужно увеличить это число на соответствующий коэффициент. Допустим, время ежедневного отключения - 4 ч, тогда мощность теплового насоса должна быть 17,6 кВт (повышающий коэффициент - 1,2). В случае моновалентного режима можно выбрать тепловой насос типа «грунт-вода» мощностью 17,1 кВт, потребляющий 6,0 кВт электроэнергии.

Для бивалентной системы с дополнительным электрическим нагревателем и температурой подачи холодной воды 10 °С для необходимости получения горячей воды и коэффициента запаса, мощность теплового насоса должна быть 11,4 Вт, а электрического котла - 6,2 кВт (в сумме - 17,6). Потребляемая системой пиковая электрическая мощность составит 9,7 кВт.

Примерная стоимость потребляемого за сезон электричества, при работе теплового насоса в моновалентном режиме составит 500 руб., а в бивалентном при температуре ниже (-10С) - 12 500. Стоимость энергоносителя при использовании только соответствующего котла составит: электричества - 42 000, дизельного топлива - 25 000, а газа - около 8000 руб. (при наличии подведенной трубы и существующих в России низких ценах на газ). В настоящее время для наших условий по экономичности работы, тепловой насос может быть сравним только с газовым котлом новых серий, а по эксплуатационным затратам, долговечности, безопасности (не требуется помещение котельной) и экологической чистоте превосходит все другие виды производства тепловой энергии.

Отметим, что при установке тепловых насосов в первую очередь следует позаботиться об утеплении здания и установке стеклопакетов с низкой теплопроводностью, что снизить тепловые потери здания, а значит и стоимость работ и оборудования.

Любой хозяин частного дома стремится минимизировать расходы на обогрев жилища. В этом плане тепловые насосы существенно выгоднее других вариантов отопления, они дают 2.5-4.5 кВт теплоты с одного потребленного киловатта электричества. Обратная сторона медали: для получения дешевой энергии придется вложить немалые средства в оборудование, самая скромная отопительная установка мощностью 10 кВт обойдется в 3500 у. е. (стартовая цена).

Единственный способ уменьшить затраты в 2-3 раза - сделать тепловой насос своими руками (сокращенно - ТН). Рассмотрим несколько реальных рабочих вариантов, собранных и проверенных мастерами–энтузиастами на практике. Поскольку для изготовления сложного агрегата требуются базовые знания о холодильных машинах, начнем с теории.

Особенности и принцип работы ТН

Чем тепловой насос отличается от других установок для отопления частных домов:

  • в отличие от котлов и обогревателей, агрегат самостоятельно не производит тепло, а подобно кондиционеру перемещает его внутрь здания;
  • ТН получил название насоса, поскольку «выкачивает» энергию из источников низкопотенциального тепла – окружающего воздуха, воды либо грунта;
  • установка питается исключительно электроэнергией, потребляемой компрессором, вентиляторами, циркуляционными насосами и платой управления;
  • работа аппарата основана на цикле Карно, используемом во всех холодильных машинах, например, кондиционерах и сплит-системах.
В режиме обогрева традиционная сплит-система нормально работает при температуре выше минус 5 градусов, на сильном морозе эффективность резко падает

Справка. Теплота содержится в любых веществах, чья температура выше абсолютного нуля (минус 273 градуса). Современные технологии позволяют отнимать указанную энергию у воздуха с температурой до -30 °С, земли и воды – до +2 °С.

В теплообменном цикле Карно участвует рабочее тело – газ фреон, кипящий при минусовой температуре. Поочередно испаряясь и конденсируясь в двух теплообменниках, хладагент поглощает энергию окружающей среды и переносит внутрь здания. В целом принцип действия теплового насоса повторяет , включенного на обогрев:

  1. Находясь в жидкой фазе, фреон двигается по трубкам наружного теплообменника-испарителя, как изображено на схеме. Получая тепло воздуха или воды сквозь металлические стенки, хладагент нагревается, кипит и испаряется.
  2. Дальше газ поступает в компрессор, нагнетающий давление до расчетного значения. Его задача – поднять точку кипения вещества, чтобы фреон сконденсировался при более высокой температуре.
  3. Проходя через внутренний теплообменник–конденсор, газ снова обращается в жидкость и отдает накопленную энергию теплоносителю (воде) или воздуху помещения напрямую.
  4. На последнем этапе жидкий хладон поступает внутрь ресивера–влагоотделителя, затем в дросселирующее устройство. Давление вещества снова падает, фреон готов пройти повторный цикл.

Схема работы теплового насоса похожа на принцип действия сплит-системы

Примечание. Обычные сплит-системы и заводские теплонасосы имеют общую черту – способность переносить энергию в обоих направлениях и функционировать в 2 режимах – отопление/охлаждение. Переключение реализовано с помощью четырехходового реверсивного клапана, меняющего направление течения газа по контуру.

В бытовых кондиционерах и ТН применяются различные типы терморегулирующей арматуры, снижающей давление хладагента перед испарителем. В бытовых сплит-системах роль регулятора играет простое капиллярное устройство, в насосах ставится дорогой терморегулирующий вентиль (ТРВ).

Заметьте, вышеописанный цикл происходит в тепловых насосах всех типов. Разница состоит в способах подвода/отбора тепла, которые мы перечислим далее.


Виды дроссельной арматуры: капиллярная трубка (фото слева) и терморегулирующий вентиль (ТРВ)

Разновидности установок

Согласно общепринятой классификации, ТН делятся на типы по источнику получаемой энергии и виду теплоносителя, которому она передается:


Справка. Разновидности тепловых насосов перечислены в порядке увеличения стоимости оборудования вместе с монтажом. Воздушные установки – самые дешевые, геотермальные – дорогие.

Основной параметр, характеризующий тепловой насос для отопления дома, – коэффициент эффективности COP, равный отношению между полученной и затраченной энергией. Например, относительно недорогие воздушные отопители не могут похвастать высоким COP – 2.5…3.5. Поясняем: затратив 1 кВт электричества, установка подает в жилище 2.5-3.5 кВт теплоты.


Способы отбора тепла водных источников: из пруда (слева) и через скважины (справа)

Водяные и грунтовые системы эффективнее, их реальный коэффициент лежит в диапазоне 3…4.5. Производительность – величина переменная, зависящая от многих факторов: конструкции теплообменного контура, глубины погружения, температуры и протока воды.

Важный момент. Водогрейные тепловые насосы не способны разогреть теплоноситель до 60-90 °С без дополнительных контуров. Нормальная температура воды от ТН составляет 35…40 градусов, котлы здесь явно выигрывают. Отсюда рекомендация производителей: подключайте оборудование к низкотемпературному отоплению – водяным .

Какой ТН лучше собирать

Формулируем задачу: нужно построить самодельный тепловой насос с наименьшими затратами. Отсюда вытекает ряд логичных выводов:

  1. В установке придется использовать минимум дорогостоящих деталей, поэтому достичь высокого значения COP не удастся. По коэффициенту производительности наш аппарат проиграет заводским моделям.
  2. Соответственно, делать чисто воздушный ТН бессмысленно, проще пользоваться в режиме обогрева.
  3. Чтобы получить реальную выгоду, нужно изготавливать тепловой насос «воздух – вода», «вода-вода» либо строить геотермальную установку. В первом случае можно добиться COP около 2-2.2, в остальных – достичь показателя 3-3.5.
  4. Без контуров напольного отопления обойтись не удастся. Теплоноситель, нагретый до 30-35 градусов, несовместим с радиаторной сетью, разве только в южных регионах.

Прокладка внешнего контура ТН к водоему

Замечание. Производители утверждают: инверторная сплит-система функционирует при уличной температуре минус 15-30 °С. В действительности эффективность обогрева существенно снижается. По отзывам домовладельцев, в морозные дни внутренний блок подает еле теплый поток воздуха.

Для реализации водяной версии ТН необходимы определенные условия (на выбор):

  • водоем за 25-50 м от жилища, на большем расстоянии потребление электричества сильно вырастет за счет мощного циркуляционного насоса;
  • колодец либо скважина с достаточным запасом (дебетом) воды и место для слива (шурф, вторая скважина, сточная канава, канализация);
  • сборный канализационный коллектор (если вам позволят туда врезаться).

Расход грунтовых вод рассчитать нетрудно. В процессе отбора теплоты самодельный ТН понизит их температуру на 4-5 °С, отсюда через теплоемкость воды определяется объем протока. Для получения 1 кВт тепла (дельту температур воды принимаем 5 градусов) нужно прогнать через ТН около 170 литров в течение часа.

На отопление дома площадью 100 м² потребуется мощность 10 кВт и расход воды 1.7 тонны в час - объем впечатляющий. Подобный тепловой водяной насос сгодится для небольшого дачного домика 30-40 м², желательно – утепленного.


Способы отбора теплоты геотермальным ТН

Сборка геотермальной системы более реальна, хотя процесс довольно трудоемкий. Вариант горизонтальной раскладки трубы по площади на глубине 1.5 м отметаем сразу – вам придется перелопатить весь участок либо платить деньги за услуги землеройной техники. Способ пробивки скважин реализовать гораздо проще и дешевле, практически без нарушения ландшафта.

Простейший тепловой насос из оконного кондиционера

Как нетрудно догадаться, для изготовления ТН «вода – воздух» потребуется оконный охладитель в рабочем состоянии. Очень желательно купить модель, оборудованную реверсивным клапаном и способную работать на обогрев, иначе придется переделывать фреоновый контур.

Совет. При покупке б/у кондиционера обратите внимание на шильдик, где отображены технические характеристики бытового прибора. Интересующий вас параметр – (указывается в киловаттах или Британских тепловых единицах – BTU).


Отопительная мощность аппарата больше холодильной и равна сумме двух параметров - производительность плюс тепло, выделяемое компрессором

При некоторой доле везения вам даже не придется выпускать фреон и перепаивать трубки. Как переделать кондиционер в тепловой насос:


Рекомендация. Если теплообменник не удается поместить в резервуар без нарушения фреоновых магистралей, постарайтесь эвакуировать газ и разрезать трубки в нужных точках (подальше от испарителя). После сборки водяного теплообменного узла контур придется спаять и заправить фреоном. Количество хладагента тоже указано на табличке.

Теперь остается запустить самодельный ТН и отрегулировать водяной поток, добиваясь максимальной эффективности. Обратите внимание: импровизированный отопитель использует полностью заводскую «начинку», вы только переместили радиатор из воздушной среды в жидкую. Как система работает вживую, смотрите на видео мастера–умельца:

Делаем геотермальную установку

Если предыдущий вариант позволит добиться примерно двойной экономии, то даже самодельный земляной контур даст COP в районе 3 (три киловатта тепла на 1 кВт израсходованного электричества). Правда, финансовые и трудовые затраты тоже существенно увеличатся.

Хотя в интернете опубликована масса примеров сборки подобных аппаратов, универсальной инструкции с чертежами не существует. Мы предложим рабочий вариант, собранный и проверенный реальным домашним мастером, хотя многие вещи придется додумывать и доделывать самостоятельно – всю информацию о тепловых насосах сложно поместить в одной публикации.

Расчет грунтового контура и теплообменников насоса

Следуя собственным рекомендациям, приступаем к расчетам геотермального насоса с вертикальными U-образными зондами, помещенными в скважины. Необходимо узнать общую протяженность внешнего контура, а потом – глубину и количество вертикальных шахт.

Исходные данные для примера: нужно обогреть частный утепленный дом площадью 80 м² и высотой потолков 2.8 м, расположенный в средней полосе. на отопление производить не станем, определим потребность в тепле по площади с учетом теплоизоляции – 7 кВт.


По желанию можно обустроить горизонтальный коллектор, но тогда придется выделить большую площадь под земляные работы

Важное уточнение. Инженерные расчеты теплонасосов довольно сложны и требуют высокой квалификации исполнителя, данной теме посвящены целые книги. В статье приводятся упрощенные вычисления, взятые из практического опыта строителей и мастеров – любителей самоделок.

Интенсивность теплообмена между землей и незамерзающей жидкостью, циркулирующей по контуру, зависит от типа грунтов:

  • 1 погонный метр вертикального зонда, погруженного в подземные воды, получит около 80 Вт теплоты;
  • в каменистых грунтах теплосъем составит порядка 70 Вт/м;
  • глинистые почвы, насыщенные влагой, отдадут примерно 50 Вт на 1 м коллектора;
  • сухие породы – 20 Вт/м.

Справка. Вертикальный зонд представляет собой 2 петли из труб, опущенных до дна скважины и залитых бетоном.

Пример вычисления длины трубы. Чтобы извлечь из сырой глинистой породы необходимые 7 кВт тепловой энергии, понадобится 7000 Вт поделить на показатель 50 Вт/м, получаем общую глубину зонда 140 м. Теперь трубопровод распределяется по скважинам глубиной 20 м, которые вы сможете пробурить своими руками. Итого 7 сверлений по 2 теплообменных петли, общая протяженность трубы – 7 х 20 х 4 = 560 м.

Следующий этап – расчет площади теплообмена испарителя и конденсора. На различных интернет-ресурсах и форумах предлагаются некие расчетные формулы, в большинстве случаев – некорректные. Мы не возьмем на себя смелость рекомендовать подобные методики и вводить вас в заблуждение, но предложим некий хитрый вариант:

  1. Обратитесь к любому известному производителю пластинчатых теплообменников, например, Alfa Laval, Kaori, «Анвитэк» и так далее. Можно выйти на официальный сайт бренда.
  2. Заполните форму подбора теплообменника либо созвонитесь с менеджером и закажите подбор агрегата, перечислив параметры сред (антифриз, фреон) – температуру на входе и выходе, тепловую нагрузку.
  3. Специалист фирмы произведет необходимые расчеты и предложит подходящую модель теплообменника. Среди его характеристик вы найдете главную – площадь поверхности обмена.

Пластинчатые агрегаты очень эффективны, но дороги (200-500 евро). Дешевле собрать кожухотрубный теплообменник из медной трубки наружным диаметром 9.5 или 12.7 мм. Выданную производителем цифру умножьте на коэффициент запаса 1.1 и поделите на длину окружности трубы, получите метраж.


Пластинчатый теплообменник из нержавейки – идеальный вариант испарителя, он эффективен и занимает мало места. Проблема в высокой цене изделия

Пример. Площадь теплового обмена предложенного агрегата составила 0.9 м². Выбрав медную трубку ½” диаметром 12.7 мм, вычисляем длину окружности в метрах: 12.7 х 3.14 / 1000 ≈ 0.04 м. Определяем общий метраж: 0.9 х 1.1 / 0.04 ≈ 25 м.

Оборудование и материалы

Будущий тепловой насос предлагается строить на базе наружного блока сплит-системы подходящей мощности (указана на табличке). Почему лучше использовать б/у кондиционер:

  • аппарат уже оснащен всеми комплектующими – компрессором, дросселем, ресивером и пусковой электрикой;
  • самодельные теплообменники можно поместить в корпус холодильной машины;
  • есть удобные сервисные порты для заправки фреона.

Примечание. Разбирающиеся в теме пользователи подбирают оборудование отдельно – компрессор, ТРВ, контроллер и так далее. При наличии опыта и знаний подобный подход только приветствуется.

Собирать ТН на базе старого холодильника нецелесообразно – мощность агрегата слишком мала. В лучшем случае удастся «выжать» до 1 кВт теплоты, чего хватит на обогрев одной небольшой комнаты.

Помимо внешнего блока «сплита» понадобятся следующие материалы:

  • труба ПНД Ø20 мм – на земляной контур;
  • полиэтиленовые фитинги для сборки коллекторов и подключения к теплообменникам;
  • циркуляционные насосы – 2 шт.;
  • манометры, термометры;
  • качественный водопроводный шланг либо труба ПНД диаметром 25-32 мм на оболочку испарителя и конденсатора;
  • трубка медная Ø9.5-12.7 мм с толщиной стенки не менее 1 мм;
  • утеплитель для трубопроводов и фреоновых магистралей;
  • комплект для герметизации греющих кабелей, укладываемых внутри водопровода (понадобится для уплотнения концов медных трубок).

Комплект втулок для герметичного ввода медной трубки

В качестве внешнего теплоносителя применяется солевой раствор воды либо антифриз для отопления – этиленгликоль. Также понадобится запас фреона, чья марка указана на шильдике сплит-системы.

Сборка теплообменного блока

Перед началом монтажных работ наружный модуль надо разобрать – снять все крышки, удалить вентилятор и большой штатный радиатор. Отключите электромагнит, управляющий реверсивным клапаном, если не планируете использовать насос в качестве охладителя. Датчики температуры и давления необходимо сохранить.

Порядок сборки основного блока ТН:

  1. Изготовьте конденсор и испаритель, просунув медную трубку внутрь шланга расчетной длины. На концах установите тройники для присоединения грунтового и отопительного контура, выступающие медные трубки уплотните с помощью специального комплекта для греющего кабеля.
  2. Используя в качестве сердечника отрезок пластиковой трубы Ø150-250 мм, намотайте самодельные двухтрубные контуры и выведите концы в нужные стороны, как это делается ниже на видео.
  3. Разместите и закрепите оба кожухотрубных теплообменника на месте штатного радиатора, медные трубки подпаяйте к соответствующим выводам. «Горячий» теплообменник–конденсатор лучше подключить к сервисным портам.
  4. Установите заводские датчики, измеряющие температуру хладагента. Утеплите голые участки трубок и сами теплообменные устройства.
  5. На водяных магистралях поставьте термометры и манометры.

Совет. Если планируется ставить основной блок на улице, нужно принять меры от застывания масла в компрессоре. Приобретите и смонтируйте зимний комплект электрического подогрева масляного картера.

На тематических форумах встречается другой способ изготовления испарителя – трубка из меди навивается спиралью, затем вставляется внутрь закрытой емкости (бака или бочки). Вариант вполне разумен при большом количестве витков, когда рассчитанный теплообменник попросту не помещается в корпусе кондиционера.

Устройство грунтового контура

На данном этапе выполняются несложные, но трудоемкие земляные работы и раскладка зондов по скважинам. Последние можно проделать вручную либо пригласить буровую машину. Расстояние между соседними скважинами – не менее 5 м. Дальнейший порядок работ:

  1. Прокопайте между сверлениями неглубокую траншею для укладки подводящих трубопроводов.
  2. В каждое отверстие опустите по 2 петли из полиэтиленовых труб и залейте ямы бетоном.
  3. Сведите магистрали к точке соединения и смонтируйте общий коллектор, используя фитинги ПНД.
  4. Проложенные в земле трубопроводы утеплите и засыпьте грунтом.

Слева на фото – опускание зонда в обсадную пластиковую трубу, справа – прокладка подводок в траншее

Важный момент. Перед бетонированием и засыпкой обязательно проверьте герметичность контура. Например, подключите к коллектору воздушный компрессор, накачайте давление 3-4 Бар и оставьте на несколько часов.

При соединении магистралей ориентируйтесь по схеме, представленной ниже. Отводы с кранами понадобятся при заполнении системы рассолом либо этиленгликолем. Две основные трубы от коллектора подведите к тепловому насосу и подключите к «холодному» теплообменнику–испарителю.


В высших точках обеих водяных контуров обязательно ставятся воздухоотводчики, на схеме условно не показаны

Не забудьте установить насосный агрегат, отвечающий за циркуляцию жидкости, направление течения – навстречу фреону в испарителе. Среды, проходящие через конденсор и испаритель, должны двигаться навстречу друг другу. Как правильно заполнить магистрали «холодной» стороны, смотрите на видео:

Аналогичным образом конденсор подсоединяется к домовой системе теплых полов. Смесительный узел с трехходовым клапаном монтировать необязательно благодаря низкой температуре подачи. Если необходимо объединить ТН с другими источниками тепла (солнечные коллекторы, котлы), используйте на несколько выводов.

Заправка и запуск системы

После монтажа и подключения агрегата к электросети наступает важный этап – заполнение системы хладагентом. Здесь ожидает подводный камень: вы не знаете, сколько фреона необходимо заправить, ведь объем основного контура сильно вырос за счет установки самодельного конденсатора с испарителем.

Вопрос решается методом заправки по давлению и температуре перегрева хладона, измеряемой на входе компрессора (туда фреон подается в газообразном состоянии). Подробная инструкция по заполнению методом измерения температуры изложена в .

Во второй части представленного видео рассказывается, как нужно заполнять систему фреоном марки R22 по давлению и температуре перегрева хладагента:

По окончании заправки включите оба циркуляционных насоса на первую скорость и запускайте компрессор в работу. Показатели температуры рассола и внутреннего теплоносителя контролируйте по термометрам. На этапе прогрева магистрали с хладагентом могут обмерзать, впоследствии иней должен растаять.

Заключение

Сделать и запустить тепловой геотермальный насос своими руками весьма непросто. Наверняка потребуются неоднократные доработки, исправления ошибок, настройки. Как правило, большинство неполадок в самодельных ТН возникает из-за неправильной сборки либо заправки основного теплообменного контура. Если агрегат сразу отказал (сработала автоматика безопасности) либо не греет теплоноситель, стоит вызвать мастера по холодильному оборудованию – он проведет диагностику и укажет на допущенные ошибки.

С учетом того, что тепловой насос - оборудование, требующее достаточно серьезных затрат на приобретение и монтаж, к вопросу его выбора следует относиться особенно тщательно. Первое, что необходимо сделать потенциальному покупателю - это произвести хотя бы приблизительный расчет мощности оборудования, которое подойдет для эффективной работы в конкретных условиях. Конечно, можно обратиться к специалистам, чтобы составить проект теплового насоса, но для того, чтобы оценить примерные затраты, можно некоторые первоначальные расчеты сделать самостоятельно.

Тепловой насос, проектирование которого - достаточно сложное мероприятие, выбирают в зависимости от площади дома, степени его утепленности, средних температурных значений в холодное время года. Кроме расчета необходимой мощности, полный проект предполагает определение параметров земляного коллектора для геотермального насоса, расчет количества и диаметра труб для скважины в случае системы вода-вода. Правильный расчет теплового насоса предполагает учет множества факторов: от характеристик грунта на участке до материала, из которого построен дом.

Разработка системы отопления на основе теплового насоса

Если вас серьезно заинтересовал такой прогрессивный способ отопления дома, как тепловые насосы, то лучше всего предпочесть услуги специалистов с профильным образованием и большим опытом работы с подобным оборудованием. Все потому, что правильная разработка теплового насоса и всей системы отопления для дома позволит на долгие годы забыть о проблемах с теплом, наслаждаясь стабильной эффективной работой оборудования.

Прежде всего, стоит определиться с источником тепла, которое будет преобразовываться в энергию для теплоносителя в системе отопления. От того, будет ли это почва, вода или воздух, зависит как производство тепловых насосов (а точнее, технология изготовления), так и производительность, и цена самого оборудования и работ по установке. Одной из самых эффективных систем считается вода-вода, но для нее требуется наличие водоема рядом с домом или достаточного количества грунтовых вод на участке.

Стоит учитывать, что тепловой насос больше используется для низкотемпературных источников тепла, идеально сочетание с системой «теплый пол», но возможно и комбинирование с традиционными генераторами. Выбирая тепловые насосы, тепловой расчет их проводится так, чтобы учесть, способен ли он самостоятельно обогревать помещение даже в самые большие холода или в системе необходимо предусмотреть дополнительный источник тепла, например, электрический котел. Термодинамический расчет учитывает минимальные значения температур, которые могут достигаться зимой.

Также необходимо учитывать необходимость в горячем водоснабжении дома, если такая функциональная возможность требуется, то в необходимую мощность закладываются дополнительные 20%.

Пример расчета теплового насоса

Итак, мы имеем двухэтажное здание площадью в 250 кв.м. с высотой потолков 2,7 м. Предположим, что температура в помещении равна +20°С, а на улице -26°С. Далее делаем расчет мощности теплового насоса для отопления дома:

0,434*250*2,7*(20-(-26)) = 13475,7кВт - максимальная необходимая мощность на отопление в соответствии с СП 50.13330-2012

Больших потерь такой расчет не предполагает. Потери в данном случае могут быть даже меньше, чем 13475,7кВт.

Более точный тепловой расчет может быть сделан индивидуально. В нем будут учитываться все материалы стен, окон, потолков и т.п.

Расчет контура теплового насоса, который пойдет для отопления и для охлаждения помещения, более сложный и проводится специалистами.



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные