Блок питания из понижающего преобразователя. DC-DC преобразователь, как это иногда бывает. Технические характеристики преобразователя LM2596

LM2596 — это импульсный понижающий регулируемый стабилизатор постоянного напряжения. Имеет высокий КПД. Меньше нагревается если сравнивать с модулями на линейных стабилизаторах. Источник питания может применяться в широком спектре устройств. К безусловным достоинствам относится работа в ощутимом диапазоне входного напряжения. Вместе с большим КПД это дает хорошие результаты при последовательном включении DC-DC LM2596 с химическими источниками тока, солнечными панелями или ветряными генераторами.

Дополнив преобразователь DC-DC LM2596 трансформатором, выпрямителем и фильтром получим блок питания. На входе стабилизатора напряжение должно быть большее выходного минимум на 1.5 В. При потреблении мощности от DC-DC LM2596 более десяти Вт следует применять средства охлаждения.

Предусмотрены крепежные отверстия под винт. Клеммников нет, провода придется паять. Под микросхемой есть отверстия с металлизацией для дополнительного отвода тепла на обратную сторону платы.

Технические характеристики преобразователя LM2596

  • Эффективность преобразования (КПД) : до 92%
  • Частота переключения : 150 кГц
  • Рабочая температура : от -40 до + 85 °C
  • Влияние изменения входного напряжения на уровень выхода : ± 0.5%
  • Поддержание установленного напряжения с точностью : ± 2.5%
  • Входное напряжение : 3-40 В
  • Выходное напряжение : 1.5-35 В (регулируемое)
  • Выходной ток : номинальный до 1А, от 1 до 2А заметно возрастает нагрев, предельный 3A (требуется дополнительный радиатор)
  • Размер : 45x20x14 мм

Принципиальная схема преобразователя LM2596

В некоторых модулях защитный диод D1 включен обратно-параллельно на входе, но в таком случае не нужно забывать подсоединить и предохранитель на входе, который сгорит, если перепутать полярность, также этот диод защищает от всплесков напряжения на выходе.

Существуют варианты с прямым включением диода D1 (SS34, SS54) на входе, обычно это диоды Шоттки, у этих диодов есть два положительных качества: весьма малое прямое падение напряжения (0.2-0.4 вольта) на переходе и очень высокое быстродействие.

Но дешёвые модули на базе LM2596 не имеют защитного диода, с одной стороны — это минус, так как случайно можно убить преобразователь перепутав полярность на входе, а с другой стороны — это плюс, потому что на диоде будет падать некоторое напряжение и греться при больших токах.

Подключается преобразователь очень просто, не стабилизированное напряжение подается на контакты модуля +IN, –IN (плюс и минус соответственно), а выходное напряжение снимается с контактов платы +OUT, -OUT.

С обратной стороны есть стрелка, что указывает в какую сторону идёт преобразование.

Фото галерея














Сегодня я напишу не только о товаре, который я тестировал, а и о том, как иногда бывает, когда планируешь одно, а выходит почему то совсем другое.
В общем кому интересно, прошу под кат.

Недавно коллега ksiman выкладывал «половинки» этого преобразователя, той же платки, только без устройства индикации, потому отчасти эти обзоры дополняют друг друга.
В комментариях я упомянул о том, что также планирую сделать обзор на эту плату. В обзоре писалось, что все закончилось не очень хорошо (а вернее совсем плохо). У меня также все было не очень гладко, хотя закончилось лучше, но об этом чуть позже, а пока перейду к обзору своего варианта этого DC-DC преобразователя.

В общем увидел я такой себе мелкий DC-DC преобразователь и захотел пощупать, что он из себя представляет. Заказал на обзор, через некоторое время получил, но как то некогда было с ним разбираться и я в общем пока отложил его.

Через некоторое время дошли у меня наконец то руки, сделал некоторое количество фотографий, ощупал, осмотрел.
Пришел он в небольшом запаянном пакете.

Сам по себе небольшой, размером меньше спичечного коробка.
При этом производитель заявляет следующие характеристики:
Input voltage: 5V-30V
Выходное напряжение: 0.8V-29V
Выходной ток: максимум 5A (Требуется радиатор при токах более 3A)
КПД преобразования: 95% (максимум)
Частота преобразования: 300KHz
Выходные пульсации: 50mV (максимум)
Рабочая температура: -40℃ to +85℃
Размер: 51 x 26.3 x 114

По бокам находятся разъемы для подключения к блоку питания и к нагрузке.
Сборка аккуратная, тут ничего плохого точно не скажу.

Сверху находятся два подстроечных резистора, один регулирует ток, второй соответственно напряжение.
Ток регулируется в диапазоне 0.06-5.5 Ампера.
Напряжение в диапазоне 0.82-30 Вольт
Также около подстроечных резисторов находится красный светодиод индикации перехода в режим стабилизации тока.

Обратная сторона платы можно сказать «голая», присутствует только шунт в виде резистора сопротивлением 50мОм.
Кстати сразу замечу, что в устройствах такого типа, где тепло с микросхемы отводится на плату, для лучшей передачи тепла вообще принято делать много переходов с металлизацией между сторонами платы. Здесь этого, к сожалению, не сделано. Потому установка радиатора с обратной стороны неэффективна.

Как я выше писал, состоит преобразователь из двух плат. DC-DC преобразователь ничем не отличается от преобразователя из вышеуказанного мною . Отличие этих двух модификаций в том, что к моему была прицеплена плата индикации.
Причем подключается она через монтажные стойки.
Левые две - вход платы преобразователя, правые соответственно к выходу.
Такое подключение позволяет контролировать напряжение на выходе и измерять протекающий ток.
Конструкция получается весьма удобной и простой.

Преобразователь собран с использованием ШИМ контроллера XL4005E1. Это ШИМ контроллер рассчитанный на 5 Ампер выходного тока и входное напряжение до 32 Вольт.
Судя по даташиту весьма неплохая микросхема, но как показала практика, весьма «нежная».
Также стоит отметить диод SK86, судя по он имеет максимальный ток в 8 Ампер. Если честно, мне непонятно как он может рассеивать мощность, которая на нем выделяется при таком токе.
Но в любом случае производитель поставил довольно мощный диод, частенько ставят что нибудь похуже.

На этом фото видно часть, отвечающую за регулировку ограничения тока и индикации окончания заряда (справа видно два небольших светодиода).
Схему блока питания можно увидеть в коллеги Ksiman-а, за что ему большое спасибо:)

Сверху расположены два индикатора.
Верхний, синего цвета, отображает выходное напряжение, до 10 Вольт отображает в формате 1.23, выше 10 Вольт- 23.4. Последний разряд отображает символ - V
Нижний индикатор, красного цвета, отображает выходной ток в формате 1.23, последний разряд отображает символ - А.
Слева присутствует разъем RX-TX. Это была одна из причин, почему я заказал эту плату, хотелось попробовать подвязать ее к компьютеру, но увы, ничего не вышло:(
Назначение правого разъема мне вообще непонятно.

Плата собрана скажем так, на троечку, вроде и нормально, но явно видна некоторая неаккуратность.

На плате установлены:
Микроконтроллер
Сдвиговый регистр для управления индикатором
Предположительно операционный усилитель sgm8592y
Стабилизатор напряжения 7130H

А вот теперь небольшой нюанс. Это вторая плата, первая умерла смертью храбрых в ходе тестирования и подготовки обзора. Я не могу сказать точно от чего она умерла, но выглядело это так - Входное напряжение около 28-29 Вольт, к выходу прицеплен резистор 10 Ом, я плавно повышаю напряжение на резисторе при помощи подстроечного резистора платы, потом небольшой щелчок и на выходе входное напряжение, пробой силового транзистора.
Возможно брак, возможно какие то пульсации или еще что то, но я бы не советовал задирать сильно входное напряжение, хотя по даташиту и указано 32 Вольта и максимальное 35 Вольт.
Лучше ограничить на уровне 25-27 Вольт.
После этого я заказал вторую плату, так как по подготовке к обзору было сделано уже довольно много.

При первом включении плата настроена на выходное напряжение около 5 Вольт. Ток около 1 Ампера.
На фото плата подключена к 24 Вольта блоку питания из моего недавнего .
Если выкрутить подстроечный резистор регулировки напряжения на максимум, то выходное напряжение на холостом ходу равно входному.

Особо расписывать по плате вроде и нечего, потому перейду к тестированию.
В тестировании будут принимать участие:
Обозреваемая плата.
на 24 Вольта.
Бесконтактный

Электронная
Ручка и бумажка:)

Методика тестирования была такой:
Измерялся нагрев и пульсации выходного напряжения при следующих установленных напряжениях 5-10-15-20 Вольт, при каждом напряжении задавались токи нагрузки 1-2-3 Ампера.
Сначала измерялись характеристики при 5 Вольт, под током 1-2-3 Ампера, с интервалом 10 минут, после этого плата остывала до комнатной температуры и цикл повторялся, но уже со следующим напряжением. Итого вышло 12 измерений.
Проблем добавляла динамическая индикация, приходилось делать кучу снимков чтобы потом выбрать такой, на котором видно максимальное количество разрядов индикатора. Вообще индикация имеет довольно низкую частоту переключения разрядов, мерцание немного но заметно.
Первая проверка на холостом ходу, пульсации практически отсутствуют.
Делитель щупа осциллографа стоит в положении 1:1.



Более подробные результаты тестирования

3. 5 Вольт 3 Ампера
4. 10 Вольт 1 Ампер

5. 10 Вольт 2 Ампера
6. 10 Вольт 3 Ампера

7. 15 Вольт 1 Ампер
8. 15 Вольт 2 Ампера

9. 15 Вольт 3 Ампера
10. 20 Вольт 1 Ампер

11. 20 Вольт 2 Ампера
12. 20 Вольт 3 Ампера


Весь цикл проверки занял около 3.5 часа.
Полученные температурные режимы:
Контролировалась температура ШИМ контроллера, диода, дросселя и выходного конденсатора.
Когда испытывал, то решил проверять на 3 Ампера, как было написано на странице магазина, решил что спалю, так спалю, будет пара таких лежать. Но эксперимент показал, что преобразователь вышел и микруха не ушла в защиту, максимально достигнутая температура у ШИМ контроллера была 110.2 градуса.

Немного о применении платы

На фото выше вы можете увидеть заводской блок питания на 24 Вольта. Но так как была эпопея с перезаказом платы, то как вы понимаете, заниматься я начал этим устройством довольно давно, и заводского блока питания у меня в наличии еще не было, потому пришлось делать самому.
Да и заводской БП по моим прикидкам не очень лез в выбранный мною корпус, хотя гораздо проще использовать именно заводской.
БП моей конструкции я уже описывал в одном из , это та же плата, но некоторые элементы установлены больше\мощнее. Если интересно, то могу выложить схему здесь со всеми изменениями.
Мысли в слух, может стоит заняться производством конструкторов.....:)

Подготовил для сборки такой себе «конструктор»:)

Так как изначально я все таки рассчитывал на примерно 25-28 Вольт и 3 Ампера, то БП делал с запасом, Ватт на 90-100. А так как один из ключевых элементов, габарит которого напрямую зависит от мощности, это трансформатор, то и его выбрал с запасом.
Правда плата не была рассчитана под такой размер, но с некоторыми ухищрениями я его таки всунул:)

Вышел такой себе аккуратный трансформатор.

Еще одной из проблем было то, что мне надо в районе низковольтной части добиться минимальной толщины, чтобы элементы блока питания не мешали плате преобразователя.
Из-за этого часть элементов пришлось положить.
Плата получилась немного некрасивой, но все элементы соответствуют расчетной мощности, мне это было главнее.
Радиатор выходного диода представлял собой алюминиевую пластинку, стоящую вдоль длинной стороны, для безопасности я изолировал его в районе расположения оптрона обратной связи.
На этом фото его еще нет.
Радиатор ШИМ контроллера отрезан из специального профиля (покупал как то с метр, плата страссирована под два типа радиаторов)

Блок питания получился габаритами гораздо больше чем плата преобразователя.

Но и тут не все было просто.
Часть элементов у меня была в наличии, как у любого запасливого радиолюбителя, а часть элементов надо было купить.
В список покупок попала и микросхема ШИМ контроллера.
Программа расчета импульсного БП рекомендовала мне использовать TOP249. Но как то так совпало, что магазин, где я обычно покупаю, был закрыт и я пошел в другой, но там 249 не было, но был 250, он немного мощнее. Я подумал что ничего страшного, куплю.
Когда произвел первое включение БП, то не подавал признаков жизни, вообще.
Единственное что было, это напряжение 5 Вольт на управляющей ноге ШИМ контроллера, оно там и должно быть, но ШИМ контроллер не стартовал.
Так как я собрал довольно много разных блоков питания, то прекрасно знал, что вся остальная схема в полном порядке, да и при непорядках в остальной части ведет она себя по другому, делая попытки запуска. Но здесь было тихо.
Порывшись в запасах, я нашел ШИМ контроллер послабее, TOP247, поставил его и БП завелся с пол пинка.
Получается что купил подделку. Если есть кто то из Харькова, то могу сказать где НЕ надо покупать.
Причем фейковая микруха имеет лазерную маркировку, а нормальная - маркировку краской.

В общем поборов очередную проблему я приступил к дальнейшей сборке.
Собрал в кучку все необходимое, клеммы, переменные резисторы и ручки к ним, провода, выключатель питания.

Резистор регулировки напряжения подключается двумя проводами, тока - тремя.
Так как вышепроведенный эксперимент показал, что плата не дает нормально даже 3 Ампера, то я решил сделать ограничение на 2 Ампера, а так хотелось 3:(
Для этого я поставил параллельно крайним контактам переменного резистора постоянный резистор на 5.1 КОм. Получился максимум регулировки до примерно 2.3 Ампера.
Диапазон регулировки напряжения я так же ограничил, и таким же способом, но номинал поставил 51КОм, получилось около 26 Вольт.
Заодно вышепроведенные операции немного растянули шкалу регулировки и стало удобнее пользоваться,

Дальше я разметил и рассверлил/вырезал все необходимые отверстия, под индикатор, переменные резисторы, клеммы, кабель питания и выключатель.

В последний момент чуть не забыл подключить провода к плате. Дело в том что я плату думал приклеить, соответственно провода потом не подключить.

Плата, резисторы и клеммники установлены. Большая честь внутренностей стоит буквально впритык, но все влезло:)

Провода к блоку питания припаиваются непосредственно перед его установкой.
Если бы это был заводской блок питания, было бы удобнее, там уже есть клеммы.

Стягиваем входные провода стяжками, чтобы не лезли к радиатору, компонуем остальные и можно закрывать.

Все, блок питания практически готов, очень нехватает темного стекла на индикатор.
На самом деле показания читаются лучше, чем получилось на фото. Со вспышкой видно выключенные сегменты, а без вспышки индикатор начинает слепить, так что лучше фото сделать у меня не вышло, уж извините.
Управление не подписывал, в принципе все сделал максимально логично, синий индикатор - напряжение, соответственно его регулирует переменник с синей ручкой, аналогично ток.
Вывел на панель индикацию режима ограничения тока, два светодиода с индикации режима заряда не выводил, не вижу в них смысла.

Ограничение тока получилось на уровне 2.23 Ампера, думаю что в таком режиме плата будет работать без проблем.
Хотел сначала прицепить к плате радиатор, но потом понял всю бессмысленность данной идеи, так как греется и дроссель, который надо увеличивать и диод с микросхемой, а тепло на обратную сторону платы передается слабо.

Кстати насчет дросселя, теоретически эта плата с охлаждением должна была выдать 30 Вольт 5 Ампер, это 150 Ватт. Формально это половина он моего лабораторного 300 Ватт блока питания, только вот если зайти в его и примерно сравнить габариты силовых элементов, то разница как говорится налицо. Эта плата даже теоретически не сможет выдать 5 Ампер, разве что с другим дросселем и при низком выходном напряжении.


И так резюме:
Плюсы .
Аккуратное изготовление, не отличное, но вполне хорошее.
Преобразователь прошел проверку на токе до 3 Ампер, хотя и с большими температурами.
Точность измерения тока и напряжения вполне неплохая, особых нареканий не вызвала.
Низкий уровень пульсаций, максимально зарегистрировано около 60мВ при частоте работы 300КГц.
Компактная конструкция.

Минусы .
Большой нагрев на токах более 2-2.5 Ампер.
Следует аккуратно относиться к превышению входного напряжения или поставить защитный супрессор по входу.
Дроссель намотан тонким проводом

Мое мнение, на токах до 2 Ампер можно вполне нормально эксплуатировать. Несколько расстроило то, что не смог разобраться с сигналами RF/TX. Преобразователь вполне можно доработать «малой кровью», перемотать дроссель более толстым проводом с уменьшением количества витков раза в 1.5, либо заменить на более мощный (это лучше). Заменить диод на более мощный, а еще лучше еще и вынести его, хотя бы на обратную сторону платы, улучшится тепловой режим работы.
Заявленный КПД в 95% вряд ли достижим, но думаю что реальный где то рядом, но с большой оговоркой, при определенном режиме работы. При токе в 3 Ампера на плате выделялось около 4 Ватт тепла (ориентировочно), что дается нам очень низкий КПД при 5 Вольт выходных. С повышением выходного напряжения КПД постепенно растет, хотя у СтепДауна не должно быть такой крутой зависимости.
В общем что можно сказать, потратил деньги на запчасти, кучу времени на сборку платы БП, сборку всего этого вместе, но в результате получил БП с характеристиками:
Выходное напряжение - 0.85-24 Вольта.
Выходной ток - 0.06-2.25 Ампера.
Негусто, но имеет право на жизнь, просто блок питания можно было не делать такой мощности.

Надеюсь что предоставленная мною информация была полезна.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

представляют собой электронные устройства, которые позволяют получить напряжение на выходе, отличное от напряжения на входе.

Регулируемые модули питания (DC-DC конвертеры) используются для построения шин питания в схемах с гальванической развязкой. Они широко применяются для обеспечения питания самых разных электронных устройств, их также можно встретить в схемах управления, в устройствах связи и вычислительной техники.


Принцип работы

Принцип работы заложен в самом названии. Постоянное напряжение преобразуется в переменное. После этого происходит его повышение или понижение с последующим выпрямлением и подачей на устройство. DC-DC конвертеры, действующие по вышеизложенному принципу, получили название импульсных. Преимуществом импульсных преобразователей является высокий КПД: в районе 90%.


Виды DC-DC конвертеров
Понижающие преобразователи постоянного напряжения

Напряжение на выходе у данных преобразователей ниже, чем на входе. Например, при напряжении на входе 12-50 В с помощью таких DC-DC конвертеров на выходе можно получить напряжение в несколько вольт.


Повышающие преобразователи постоянного напряжения

Напряжение на выходе у данных преобразователей выше, чем на входе. Например, при напряжении на входе 5 В на выходе можно ожидать напряжение до 30 В.


Также преобразователи напряжения различаются по конструктивному исполнению. Они могут быть:

Модульные
Это наиболее распространенный вид DC-DC конвертеров, включающий в себя огромное количество самых разных моделей. Преобразователь помещен в металлический или пластиковый корпус, исключающий доступ к внутренним элементам.
Для монтажа на печатную плату

Данные преобразователи предназначены именно для монтажа на печатную плату. Они отличаются от модульных тем, что у них отсутствует корпус.


Основные характеристики
Эксплуатационные параметры

Диапазон входного напряжения подразумевает такие параметры напряжения на входе, при которых преобразователь будет работать в нормальном режиме в соответствии со своими заявленными функциональными возможностями.

Диапазон выходного напряжения включает в себя параметры, которые способен выдать DC-DC конвертер на выходе при нормальном режиме работы.

Коэффициент полезного действия (КПД) представляет собой отношение значений мощности на входе и выходе. КПД зависит от ряда условий, но наиболее высокий КПД достигается при максимально допустимой нагрузке. Чем больше разница между напряжением на входе и выходе, тем ниже КПД.

Ограничение по выходному току. Данная защита имеется в большинстве современных моделей стабилизаторов. Действует следующим образом: как только выходной ток достигает заданного значения, входное напряжение падает. После того как значение выходного тока входит в допустимый диапазон, подача напряжения возобновляется.


Точностные параметры

Пульсация. Даже в идеальных условиях присутствуют определенные «шумы», поэтому полностью исключить их невозможно. В качестве единиц измерения указываются мВ. Иногда производитель ставит рядом «р-р», что означает размах напряжения пульсаций – от минимума отрицательного пика до максимума положительного.


Рассмотрим и сравним работу нескольких регулируемых преобразователей напряжения разной ценовой категории. Начнем от простого к сложному.


Описание

Данная модель представляет собой недорогой миниатюрный DC-DC конвертер, с помощью которого можно зарядить маленькие батареи. Максимальный ток на выходе: 2,5 А, поэтому батареи с емкостью больше 20 ампер-часов данный конвертер заряжать будет долго.

Лучше всего это устройство подойдет для начинающих, которые на его базе смогут собрать блок питания с выходным напряжением от 0,8 В до 20 В и выходным током до 2 А. При этом возможна регулировка как выходного напряжения, так и выходного тока.

Данный стабилизатор может держать до 5 А, однако, на практике при таком значении тока ему потребуется теплоотвод. Без теплоотвода стабилизатор выдерживает до 3 А.



Функционал

Преобразователь напряжения XL4005 недаром называется «регулируемым». Он имеет несколько регулировок. Одна из наиболее ценных - возможность ограничения выходного тока. Например, можно поставить ограничение выходного тока в 2,5 А, и ток никогда не достигнет данного значения, так как в противном случае это сразу приведет к падению напряжения. Данная защита особенно актуальна при заряде батарей.

Наличие светодиодов также свидетельствует о том, что представленный стабилизатор отлично подойдет для целей заряда. Имеется светодиод, который загорается, когда стабилизатор работает в режиме ограничения тока, то есть когда включается защита от перегрузок по выходному току. На боковой стороне снизу есть еще два светодиода: один работает, когда идет заряд, другой загорается, когда заряд закончился.


Стоит обратить внимание, что это очень доступная по цене и простая в использовании модель, которая вполне соответствует заявленному функционалу.

Теперь рассмотрим более дорогой и функциональный преобразователь, который отлично подойдет для более сложных и серьезных проектов.


Описание

Данная модель представляет собой регулируемый понижающий преобразователь напряжения с цифровым управлением. Он отличается высоким КПД. Цифровое управление означает, что регулировка параметров осуществляется с помощью кнопок. Сам модуль можно разделить на несколько частей: DC-DC конвертер, питание цифровой части, измерительная часть и цифровая часть.


Входное напряжение у данного устройства от 6 В до 32 В. Выходное напряжение регулируется от 0 В до 30 В. Шаг регулировки напряжения 0,01 В. Выходной ток регулируется от 0 А до 6 А. Шаг регулировки 0,001 А. КПД преобразователя до 92%. Для крепления проводов на преобразователе установлены специальные зажимы. Также на плате присутствуют надписи: вход +, вход -, выход -, выход +. Силовая часть построена на ШИМ-контроллере XL4016Е1. Используется мощный десятиамперный диод MBR1060. Всем управляет 8-битный микроконтроллер STM8S003F3. На цифровой части имеется UART-разъем.


Светодиоды

Кроме кнопок и индикатора на данном устройстве присутствует три светодиода.



Первый (красный, out) загорается тогда, когда преобразователь подает напряжение на выход. Второй светодиод (желтый, СС – Constant Current) загорается тогда, когда срабатывает ограничение тока на выходе. Третий светодиод (зеленый, CV – Constant Voltage) загорается тогда, когда преобразователь переходит в режим ограничения по напряжению.


Органы управления
Органы управления представлены четырьмя кнопками.




Если рассматривать их справа налево, то первая кнопка – «ОК», вторая – «вверх», третья – «вниз» и четвертая – «SET».

Преобразователь запускается путем нажатия кнопки «ОК», при этом происходит вход в меню. Если не отпускать кнопку «ОК», то можно увидеть, как меняются цифры: 0-1-2. Это три программы, которыми обладает данный конвертер.

Программа «0»: сразу после подачи напряжения на вход включается питание на выходе.
Программа «1»: позволяет сохранить необходимые параметры.
Программа «2»: автоматически отображает параметры после включения питания.
Чтобы выбрать нужную программу, необходимо в момент отображения нужной цифры отпустить кнопку «ОК».
Данное устройство отображает напряжение относительно точно. Возможная погрешность по напряжению +/-0,035 В, по току +/- 0,006 А. Регулировка производится как одиночными нажатиями кнопок, так и путем их удержания.

Возможен вывод параметров текущего тока. При повторном нажатии кнопки «ОК» на индикатор выводится мощность. Если еще раз нажать кнопку «ОК», то можно посмотреть емкость, которую отдал преобразователь.

Данный преобразователь точный и мощный, отлично справится с серьезными задачами.


Как выбрать преобразователь напряжения

На сегодняшний день на рынке представлено большое количество моделей самых разных DC-DC конвертеров. Наиболее популярными среди них являются импульсные преобразователи. Но и их выбор столь велик, что легко растеряться. На что же нужно обратить особое внимание?

КПД и диапазон температур

Некоторым преобразователям для нормальной работы и достижения заявленной мощности необходим радиатор. В противном случае, хотя устройство и способно функционировать, но при этом его КПД падает. Как правило, добросовестный продавец указывает на этот момент в примечаниях и сносках, которыми не стоит пренебрегать.


Температура пайки конверторов для поверхностного монтажа

Данная информация обычно указана в технической документации. И хотя обычная микросхема должна выдерживать температуру до 280°C, лучше уточнить этот момент.


Габариты конвертера

Маленький конвертер не может обладать очень высокой мощностью. И хотя современные технологии продолжают совершенствоваться, но их возможности не беспредельны. Конвертеру необходимы определенные габариты, чтобы обеспечивать охлаждение компонентов и выдерживать нагрузку.


На сегодняшний день существует огромное количество самых разных миниатюрных регулируемых преобразователей, с индикацией и без, с дополнительными функциями и программами и без таковых. Такие DC-DC конвертеры могут быть использованы в самых разных целях в зависимости от фантазии разработчика. Современные технологии позволяют сочетать мощность, точность, миниатюрность и доступную цену.


Линейный и импульсный источники питания

Начнем с основ. Блок питания в компьютере выполняет три функции. Во-первых, переменный ток из бытовой сети электропитания нужно преобразовать в постоянный. Второй задачей БП является понижение напряжения 110-230 В, избыточного для компьютерной электроники, до стандартных значений, требуемых конвертерами питания отдельных компонентов ПК, - 12 В, 5 В и 3,3 В (а также отрицательные напряжения, о которых расскажем чуть позже). Наконец, БП играет роль стабилизатора напряжений.

Есть два основных типа источников питания, которые выполняют перечисленные функции, - линейный и импульсный. В основе простейшего линейного БП лежит трансформатор, на котором напряжение переменного тока понижается до требуемого значения, и затем ток выпрямляется диодным мостом.

Однако от БП требуется еще и стабилизация выходного напряжения, что обусловлено как нестабильностью напряжения в бытовой сети, так и падением напряжения в ответ на увеличение тока в нагрузке.

Чтобы компенсировать падение напряжения, в линейном БП параметры трансформатора рассчитываются так, чтобы обеспечить избыточную мощность. Тогда при высоком токе в нагрузке будет наблюдаться требуемый вольтаж. Однако и повышенное напряжение, которое возникнет без каких-либо средств компенсации при низком токе в полезной нагрузке, тоже неприемлемо. Избыточное напряжение устраняется за счет включения в цепь неполезной нагрузки. В простейшем случае таковой является резистор или транзистор, подключенный через стабилитрон (Zener diode). В более продвинутом - транзистор управляется микросхемой с компаратором. Как бы то ни было, избыточная мощность просто рассеивается в виде тепла, что отрицательно сказывается на КПД устройства.

В схеме импульсного БП возникает еще одна переменная, от которой зависит напряжение на выходе, в дополнение к двум уже имеющимся: напряжению на входе и сопротивлению нагрузки. Последовательно с нагрузкой стоит ключ (которым в интересующем нас случае является транзистор), управляемый микроконтроллером в режиме широтно-импульсной модуляции (ШИМ). Чем выше длительность открытых состояний транзистора по отношению к их периоду (этот параметр называется duty cycle, в русскоязычной терминологии используется обратная величина - скважность), тем выше напряжение на выходе. Из-за наличия ключа импульсный БП также называется Switched-Mode Power Supply (SMPS).

Через закрытый транзистор ток не идет, а сопротивление открытого транзистора в идеале пренебрежимо мало. В действительности открытый транзистор обладает сопротивлением и рассеивает какую-то часть мощности в виде тепла. Кроме того, переход между состояниями транзистора не идеально дискретный. И все же КПД импульсного источника тока может превышать 90%, в то время как КПД линейного БП со стабилизатором в лучшем случае достигает 50%.

Другое преимущество импульсных источников питания состоит в радикальном уменьшении габаритов и массы трансформатора по сравнению с линейными БП такой же мощности. Известно, что чем выше частота переменного тока в первичной обмотке трансформатора, тем меньше необходимый размер сердечника и число витков обмотки. Поэтому ключевой транзистор в цепи размещают не после, а до трансформатора и, помимо стабилизации напряжения используют для получения переменного тока высокой частоты (для компьютерных БП это от 30 до 100 кГц и выше, а как правило - около 60 кГц). Трансформатор, работающий на частоте электросети 50-60 Гц, для мощности, требуемой стандартным компьютером, был бы в десятки раз массивнее.

Линейные БП сегодня применяются главным образом в случае маломощных устройств, когда относительно сложная электроника, необходимая для импульсного источника питания, составляет более чувствительную статью расходов в сравнении с трансформатором. Это, к примеру, блоки питания на 9 В, которые используются для гитарных педалей эффектов, а когда-то - для игровых приставок и пр. А вот зарядники для смартфонов уже сплошь импульсные - тут расходы оправданны. Благодаря существенно меньшей амплитуде пульсаций напряжения на выходе линейные БП также применяются в тех областях, где это качество востребованно.

⇡ Общая схема блока питания стандарта ATX

БП настольного компьютера представляет собой импульсный источник питания, на вход которого подается напряжение бытовой электросети с параметрами 110/230 В, 50-60 Гц, а на выходе есть ряд линий постоянного тока, основные из которых имеют номинал 12, 5 и 3,3 В. Помимо этого, БП обеспечивает напряжение -12 В, а когда-то еще и напряжение -5 В, необходимое для шины ISA. Но последнее в какой-то момент было исключено из стандарта ATX в связи с прекращением поддержки самой ISA.

На упрощенной схеме стандартного импульсного БП, представленной выше, можно выделить четыре основных этапа. В таком же порядке мы рассматриваем компоненты блоков питания в обзорах, а именно:

  1. фильтр ЭМП - электромагнитных помех (RFI filter);
  2. первичная цепь - входной выпрямитель (rectifier), ключевые транзисторы (switcher), создающие переменный ток высокой частоты на первичной обмотке трансформатора;
  3. основной трансформатор;
  4. вторичная цепь - выпрямители тока со вторичной обмотки трансформатора (rectifiers), сглаживающие фильтры на выходе (filtering).

⇡ Фильтр ЭМП

Фильтр на входе БП служит для подавления двух типов электромагнитных помех: дифференциальных (differential-mode) - когда ток помехи течет в разные стороны в линиях питания, и синфазных (common-mode) - когда ток течет в одном направлении.

Дифференциальные помехи подавляются конденсатором CX (крупный желтый пленочный конденсатор на фото выше), включенным параллельно нагрузке. Иногда на каждый провод дополнительно вешают дроссель, выполняющий ту же функцию (нет на схеме).

Фильтр синфазных помех образован конденсаторами CY (синие каплевидные керамические конденсаторы на фото), в общей точке соединяющими линии питания с землей, и т.н. синфазным дросселем (common-mode choke, LF1 на схеме), ток в двух обмотках которого течет в одном направлении, что создает сопротивление для синфазных помех.

В дешевых моделях устанавливают минимальный набор деталей фильтра, в более дорогих описанные схемы образуют повторяющиеся (полностью или частично) звенья. В прошлом нередко встречались БП вообще без фильтра ЭМП. Сейчас это скорее курьезное исключение, хотя, покупая совсем дешевый БП, можно, все-таки нарваться на такой сюрприз. В результате будет страдать не только и не столько сам компьютер, сколько другая техника, включенная в бытовую сеть, - импульсные БП являются мощным источником помех.

В районе фильтра хорошего БП можно обнаружить несколько деталей, защищающих от повреждения само устройство либо его владельца. Почти всегда есть простейший плавкий предохранитель для защиты от короткого замыкания (F1 на схеме). Отметим, что при срабатывании предохранителя защищаемым объектом является уже не блок питания. Если произошло КЗ, то, значит, уже пробило ключевые транзисторы, и важно хотя бы предотвратить возгорание электропроводки. Если в БП вдруг сгорел предохранитель, то менять его на новый, скорее всего, уже бессмысленно.

Отдельно выполняется защита от кратковременных скачков напряжения с помощью варистора (MOV - Metal Oxide Varistor). А вот никаких средств защиты от длительного повышения напряжения в компьютерных БП нет. Эту функцию выполняют внешние стабилизаторы со своим трансформатором внутри.

Конденсатор в цепи PFC после выпрямителя может сохранять значительный заряд после отключения от питания. Чтобы беспечного человека, сунувшего палец в разъем питания, не ударило током, между проводами устанавливают разряжающий резистор большого номинала (bleeder resistor). В более изощренном варианте - вместе с управляющей схемой, которая не дает заряду утекать при работе устройства.

Кстати, наличие фильтра в блоке питания ПК (а в БП монитора и практически любой компьютерной техники он тоже есть) означает, что покупать отдельный «сетевой фильтр» вместо обычного удлинителя, в общем-то, без толку. У него внутри все то же самое. Единственное условие в любом случае - нормальная трехконтактная проводка с заземлением. В противном случае конденсаторы CY, соединенные с землей, просто не смогут выполнять свою функцию.

⇡ Входной выпрямитель

После фильтра переменный ток преобразуется в постоянный с помощью диодного моста - как правило, в виде сборки в общем корпусе. Отдельный радиатор для охлаждения моста всячески приветствуется. Мост, собранный из четырех дискретных диодов, - атрибут дешевых блоков питания. Можно также поинтересоваться, на какой ток рассчитан мост, чтобы определить, соответствует ли он мощности самого БП. Хотя по этому параметру, как правило, имеется хороший запас.

⇡ Блок активного PFC

В цепи переменного тока с линейной нагрузкой (как, например, лампа накаливания или электроплитка) протекающий ток следует такой же синусоиде, как и напряжение. Но это не так в случае с устройствами, имеющими входной выпрямитель, - такими как импульсные БП. Блок питания пропускает ток короткими импульсами, примерно совпадающими по времени с пиками синусоиды напряжения (то есть максимальным мгновенным напряжением), когда подзаряжается сглаживающий конденсатор выпрямителя.

Сигнал тока искаженной формы раскладывается на несколько гармонических колебаний в сумме с синусоидой данной амплитуды (идеальным сигналом, который имел бы место при линейной нагрузке).

Мощность, используемая для совершения полезной работы (которой, собственно, является нагрев компонентов ПК), указана в характеристиках БП и называется активной. Остальная мощность, порождаемая гармоническими колебаниями тока, называется реактивной. Она не производит полезной работы, но нагревает провода и создает нагрузку на трансформаторы и прочее силовое оборудование.

Векторная сумма реактивной и активной мощности называется полной мощностью (apparent power). А отношение активной мощности к полной называется коэффициентом мощности (power factor) - не путать с КПД!

У импульсного БП коэффициент мощности изначально довольно низкий - около 0,7. Для частного потребителя реактивная мощность не составляет проблемы (благо она не учитывается электросчетчиками), если только он не пользуется ИБП. На бесперебойник как раз таки ложится полная мощность нагрузки. В масштабе офиса или городской сети избыточная реактивная мощность, создаваемая импульсными БП уже значительно снижает качество электроснабжения и вызывает расходы, поэтому с ней активно борются.

В частности, подавляющее большинство компьютерных БП оснащаются схемами активной коррекции фактора мощности (Active PFC). Блок с активным PFC легко опознать по единственному крупному конденсатору и дросселю, установленным после выпрямителя. В сущности, Active PFC является еще одним импульсным преобразователем, который поддерживает на конденсаторе постоянный заряд напряжением около 400 В. При этом ток из питающей сети потребляется короткими импульсами, ширина которых подобрана таким образом, чтобы сигнал аппроксимировался синусоидой - что и требуется для имитации линейной нагрузки. Для синхронизации сигнала потребления тока с синусоидой напряжения в контроллере PFC имеется специальная логика.

Схема активного PFC содержит один или два ключевых транзистора и мощный диод, которые размещаются на одном радиаторе с ключевыми транзисторами основного преобразователя БП. Как правило, ШИМ-контроллер ключа основного преобразователя и ключа Active PFC являются одной микросхемой (PWM/PFC Combo).

Коэффициент мощности у импульсных блоков питания с активным PFC достигает 0,95 и выше. Кроме того, у них есть одно дополнительное преимущество - не требуется переключатель сети 110/230 В и соответствующий удвоитель напряжения внутри БП. Большинство схем PFC переваривают напряжения от 85 до 265 В. Кроме того, снижается чувствительность БП к кратковременным провалам напряжения.

Кстати, помимо активной коррекции PFC, существует и пассивная, которая подразумевает установку дросселя большой индуктивности последовательно с нагрузкой. Эффективность ее невелика, и в современном БП вы такое вряд ли найдете.

⇡ Основной преобразователь

Общий принцип работы для всех импульсных БП изолированной топологии (с трансформатором) один: ключевой транзистор (или транзисторы) создает переменный ток на первичной обмотке трансформатора, а ШИМ-контроллер управляет скважностью их переключения. Конкретные схемы, однако, различаются как по количеству ключевых транзисторов и прочих элементов, так и по качественным характеристикам: КПД, форма сигнала, помехи и пр. Но здесь слишком многое зависит от конкретной реализации, чтобы на этом стоило заострять внимание. Для интересующихся приводим набор схем и таблицу, которая позволит по составу деталей опознавать их в конкретных устройствах.

Транзисторы Диоды Конденсаторы Ножки первичной обмотки трансформатора
Single-Transistor Forward 1 1 1 4
2 2 0 2
2 0 2 2
4 0 0 2
2 0 0 3

Помимо перечисленных топологий, в дорогих БП встречаются резонансные (resonant) варианты Half Bridge, которые легко опознать по дополнительному крупному дросселю (или двум) и конденсатору, образующим колебательный контур.

Single-Transistor Forward

⇡ Вторичная цепь

Вторичная цепь - это все, что находится после вторичной обмотки трансформатора. В большинстве современных блоков питания трансформатор имеет две обмотки: с одной из них снимается напряжение 12 В, с другой - 5 В. Ток сначала выпрямляется с помощью сборки из двух диодов Шоттки - одной или нескольких на шину (на самой высоконагруженной шине - 12 В — в мощных БП бывает четыре сборки). Более эффективными с точки зрения КПД являются синхронные выпрямители, в которых вместо диодов используются полевые транзисторы. Но это прерогатива по-настоящему продвинутых и дорогих БП, претендующих на сертификат 80 PLUS Platinum.

Шина 3,3 В, как правило, выводится от той же обмотки, что и шина 5 В, только напряжение понижается с помощью насыщаемого дросселя (Mag Amp). Специальная обмотка на трансформаторе под напряжение 3,3 В - экзотический вариант. Из отрицательных напряжений в текущем стандарте ATX осталось только -12 В, которое снимается со вторичной обмотки под шину 12 В через отдельные слаботочные диоды.

ШИМ-управление ключом преобразователя изменяет напряжение на первичной обмотке трансформатора, а следовательно - на всех вторичных обмотках сразу. При этом потребление тока компьютером отнюдь не равномерно распределено между шинами БП. В современном железе наиболее нагруженной шиной является 12-В.

Для раздельной стабилизации напряжений на разных шинах требуются дополнительные меры. Классический способ подразумевает использование дросселя групповой стабилизации. Три основные шины пропущены через его обмотки, и в результате если на одной шине увеличивается ток, то на других - падает напряжение. Допустим, на шине 12 В возрос ток, и, чтобы предотвратить падение напряжения, ШИМ-контроллер уменьшил скважность импульсов ключевых транзисторов. В результате на шине 5 В напряжение могло бы выйти за допустимые рамки, но было подавлено дросселем групповой стабилизации.

Напряжение на шине 3,3 В дополнительно регулируется еще одним насыщаемым дросселем.

В более совершенном варианте обеспечивается раздельная стабилизация шин 5 и 12 В за счет насыщаемых дросселей, но сейчас эта конструкция в дорогих качественных БП уступила место преобразователям DC-DC. В последнем случае трансформатор имеет единственную вторичную обмотку с напряжением 12 В, а напряжения 5 В и 3,3 В получаются благодаря преобразователям постоянного тока. Такой способ наиболее благоприятен для стабильности напряжений.

Выходной фильтр

Финальной стадией на каждой шине является фильтр, который сглаживает пульсации напряжения, вызываемые ключевыми транзисторами. Кроме того, во вторичную цепь БП в той или иной мере пробиваются пульсации входного выпрямителя, чья частота равна удвоенной частоте питающей электросети.

В состав фильтра пульсаций входит дроссель и конденсаторы большой емкости. Для качественных блоков питания характерна емкость не менее 2 000 мкФ, но у производителей дешевых моделей есть резерв для экономии, когда устанавливают конденсаторы, к примеру, вдвое меньшего номинала, что неизбежно отражается на амплитуде пульсаций.

⇡ Дежурное питание +5VSB

Описание компонентов блока питания было бы неполным без упоминания об источнике дежурного напряжения 5 В, который делает возможным спящий режим ПК и обеспечивает работу всех устройств, которые должны быть включены постоянно. «Дежурка» питается от отдельного импульсного преобразователя с маломощным трансформатором. В некоторых БП встречается и третий трансформатор, использующийся в цепи обратной связи для изоляции ШИМ-контроллера от первичной цепи основного преобразователя. В других случаях эту функцию выполняют оптопары (светодиод и фототранзистор в одном корпусе).

⇡ Методика тестирования блоков питания

Одним из основных параметров БП является стабильность напряжений, которая находит отражение в т.н. кросс-нагрузочной характеристике. КНХ представляет собой диаграмму, в которой на одной оси отложен ток или мощность на шине 12 В, а на другой - совокупный ток или мощность на шинах 3,3 и 5 В. В точках пересечения при разных значениях обеих переменных определяется отклонение напряжения от номинала на той или иной шине. Соответственно, мы публикуем две разные КНХ - для шины 12 В и для шины 5/3,3 В.

Цвет точки означает процент отклонения:

  • зеленый: ≤ 1%;
  • салатовый: ≤ 2%;
  • желтый: ≤ 3%;
  • оранжевый: ≤ 4%;
  • красный: ≤ 5%.
  • белый: > 5% (не допускается стандартом ATX).

Для получения КНХ используется сделанный на заказ стенд для тестирования блоков питания, который создает нагрузку за счет рассеивания тепла на мощных полевых транзисторах.

Другой не менее важный тест - определение размаха пульсаций на выходе БП. Стандарт ATX допускает пульсации в пределах 120 мВ для шины 12 В и 50 мВ - для шины 5 В. Различают высокочастотные пульсации (на удвоенной частоте ключа основного преобразователя) и низкочастотные (на удвоенной частоте питающей сети).

Этот параметр мы измеряем при помощи USB-осциллографа Hantek DSO-6022BE при максимальной нагрузке на БП, заданной спецификациями. На осциллограмме ниже зеленый график соответствует шине 12 В, желтый - 5 В. Видно, что пульсации находятся в пределах нормы, и даже с запасом.

Для сравнения приводим картину пульсаций на выходе БП старого компьютера. Этот блок изначально не был выдающимся, но явно не стал лучше от времени. Судя по размаху низкочастотных пульсаций (обратите внимание, что деление развертки напряжения увеличено до 50 мВ, чтобы колебания поместились на экран), сглаживающий конденсатор на входе уже пришел в негодность. Высокочастотные пульсации на шине 5 В находятся на грани допустимых 50 мВ.

В следующем тесте определяется КПД блока при нагрузке от 10 до 100% от номинальной мощности (путем сравнения мощности на выходе с мощностью на входе, измеренной при помощи бытового ваттметра). Для сравнения на графике приводятся критерии различных категорий 80 PLUS. Впрочем, большого интереса в наши дни это не вызывает. На графике приведены результаты топового БП Corsair в сравнении с весьма дешевым Antec, а разница не то чтобы очень велика.

Более насущный для пользователя вопрос - шум от встроенного вентилятора. Непосредственно измерить его вблизи от ревущего стенда для тестирования БП невозможно, поэтому мы измеряем скорость вращения крыльчатки лазерным тахометром - также при мощности от 10 до 100%. На нижеприведенном графике видно, что при низкой нагрузке на этот БП 135-миллиметровый вентилятор сохраняет низкие обороты и вряд ли слышен вообще. При максимальной нагрузке шум уже можно различить, но уровень все еще вполне приемлемый.

Участники нашей сегодняшней статьи - старшие модели блоков питания трёх разных производителей, причём старших не просто по своей мощности, а по вложенным в них технологиям. Все три компании уверяют, что рассматриваемые ниже блоки питания представляют собой вершину прогресса, в них используются новейшие схемотехнические решения, причём некоторые - впервые. Разумеется, пройти мимо такого мы не могли: то, что сегодня является вершиной прогресса, завтра станет вполне массовым решением.

Так как обещанные нам новшества - не косметические, вроде модных в этом сезоне расцветок вентиляторов, а на уровне схемотехники и принципов работы импульсных блоков питания, то наиболее интересные моменты мы будем рассматривать по возможности подробно. К сожалению, у многих авторов это означает либо дословное перепечатывание рекламных брошюр (в результате, например, за блоками Seasonic в списке ключевых характеристик числится «сотовая структура вентиляционной решётки», хотя, по самым скромным прикидкам, она такая минимум у 95 % имеющихся в продаже блоков питания среднего и верхнего классов), либо распаивание блока на составные части с перечислением типов транзисторов и диодов (занятие трудоёмкое, но практической пользы в общем-то не несущее - марки транзисторов интересны разве что людям, которые эти блоки ремонтируют). Мы же, чтобы не уподобляться большинству, постараемся рассмотреть именно особенности схемотехники новых блоков, отличающие их от решений вчерашнего дня - на уровне принципиальных схем (разумеется, несколько упрощённых относительно реального блока), из которых можно было бы понять не столько какие транзисторы стоят в этом блоке, сколько зачем они стоят именно так и почему производитель называет это преимуществом.

Для понимания соответствующих частей статьи (в описании каждого блока они выделены в подраздел «Схемотехника») требуется некоторое знакомство с электроникой - как минимум, представления о сути принципиальных схем и работе отдельных деталей в них. Для специалистов и просто радиолюбителей, желающих подробно познакомиться с теорией и практикой реализации описываемых решений, мы будем также приводить ссылки на соответствующие статьи.

Если же вы просто подбираете хороший блок питания, а потому особенности схемотехники вас не интересуют, то принципиальные схемы можно просто пролистывать - все прочие разделы, включая собственно тестирование, выполнены в соответствии с нашей обычной методикой.

Методика тестирования

Описание методики тестирования, используемого нами оборудования, а также краткое объяснение, что означают на практике те или иные паспортные или же измеряемые нами параметры блоков питания, можно найти по следующей ссылке: «Методика тестирования блоков питания ». Если вы чувствуете, что недостаточно хорошо ориентируетесь в цифрах и терминах, которыми изобилует статья – пожалуйста, ознакомьтесь с соответствующими разделами указанного описания, надеемся, оно прояснит многие вопросы.

Ознакомиться с полным перечнем побывавших в нашей лаборатории моделей можно по ссылке «Каталог протестированных блоков питания ».

Antec Signature SG-850

Несмотря на то, что в продуктовой линейке Antec блоки питания Signature - не самые мощные, именно они официально считаются старшими моделями. Производитель обещает нам стабильность, мощность, тишину и высокую эффективность - блоки Signature сертифицированы на соответствие стандарту «80 PLUS Bronze» (КПД не ниже 82 % при нагрузке от 20 % до 100 %).

Производитель блока - компания Delta Electronics.

Упаковка и комплект поставки

Коробка сделана довольно оригинально: она из толстого чёрного картона с ярко-жёлтой полосой посередине. На верхней поверхности красуется золотая надпись «Antec», на боковой, приглядевшись, можно увидеть выдавленную чёрным по чёрному надпись «Signature 850 watt power supply». Прочей информации на коробке нет.

Внутри, помимо самого блока, мы обнаруживаем руководство по установке, комплект съёмных шлейфов, шнур питания и четыре болтика.

Внешний вид



Блок выполнен в корпусе, выкрашенном чёрной матовой краской. Длина корпуса - 180 мм. Занятно, что золотистая надпись «Antec» не нанесена краской, а сделана на отдельной пластинке, вклеенной в выемку крышки блока.



На задней стенке мы обнаруживаем четыре разъёма для съёмных шлейфов - два для видеокарт и два для периферии. Рядом с каждым из разъёмов указана линия +12 В, к которой он подключён.

Схемотехника

Signature скомпонован по немного нетрадиционной схеме - его электроника разнесена на две полноразмерные платы, расположенные лицом друг к другу на противоположных стенках блока.


На первой плате мы обнаруживаем входной фильтр (на снимке - слева вверху), источник дежурного питания (слева внизу) и активный PFC вместе с выпрямителем и высоковольтными сглаживающими конденсаторами (правая часть платы). Благодаря тому, что под эти схемы отдана целая большая плата, расположение деталей получилось заметно более просторным, чем в большинстве блоков сравнимой мощности.

Слева на плате видно электромагнитное реле (прямоугольная деталь в коричневом корпусе) - это один из способов увеличения эффективности, практикующийся в последнее время в большинстве дорогих блоков. Задача реле проста: оно полностью отключает высокое напряжение от входа активного PFC, если блок выключен. Это и увеличивает надёжность блока (детали не стоят под напряжением почём зря), и немного снижает его потребление в режима «сна», когда работает только дежурный источник.



На второй плате расположен силовой трансформатор и его ключ (транзисторы на небольшом радиаторе), выпрямители (диодные сборки на длинном радиаторе, идущем через всю плату), выходные LC-фильтры, схема контроля выходных напряжений и токов, а также два преобразователя постоянного тока («DC-DC converters» в англоязычной литературе), занимающиеся получением напряжений +3,3 В и +5 В из +12 В.

Так как подобные преобразователи в обозримом будущем будут регулярно встречаться и в различных обзорах блоков питания, и в рекламе практически у всех производителей, остановимся на том, зачем они нужны.

Начнём с истории и базовой теории. Простейший импульсный преобразователь выглядит примерно вот так:



Высоковольтная часть (слева от трансформатора T1) показана условно, значение входного напряжения 400 В указано для блоков с активным PFC, в блоках без оного оно ниже, порядка 310 В. Высоковольтная часть построена по схеме прямоходового преобразователя («forward converter»), в настоящее время весьма популярной среди разработчиков блоков питания.

ШИМ-контроллер («PWM control») управляет транзистором Q1, переключая его с частотой порядка нескольких десятков килогерц, к транзистору подключён трансформатор T1, понижающий напряжение и изолирующий низковольтные цепи блока от высоковольтных. Импульсы тока через левый по схеме диод сборки D1 заряжают конденсаторы C1-C3 выходного фильтра и дроссель L1 (если в конденсаторах энергия накапливается в виде электрического поля, то в дросселе - в виде магнитного), при этом ток проходит через подключённую к блоку нагрузку. Между импульсами дроссель разряжается через правый диод сборки D1, при этом ток опять проходит через нагрузку. Дроссель L2 имеет небольшую индуктивность и нужен исключительно для подавления высокочастотных помех.

Благодаря наличию конденсаторов, напряжение на нагрузке колеблется в небольших пределах, поднимаясь во время прихода импульсов и снижаясь между ними. Однако, если импульсы становятся короче, то среднее напряжение начинает снижаться, и наоборот - таким образом, мы получаем возможность контролировать выходное напряжение блока, меняя длительность включения транзистора Q1 на каждом импульсе. Заведя же на ШИМ-контроллер обратную связь с выхода блока, мы сможем не просто контролировать выходное напряжение, а сделать так, чтобы контроллер удерживал его постоянным.

NB: вкратце познакомиться с разными типами импульсных блоков питания можно на английском языке в статье «Switching Power Supply Topology Review » (PDF, 1,09 Мбайта), а также на схеме «Power Supply Topologies Poster » (PDF, 143 кбайта).

Напряжений у нас, однако, в компьютерном блоке питания несколько - и какое именно из них прикажете удерживать? Допустим, мы запустили игрушку - на полную мощность заработала видеокарта, выросла нагрузка на шину +12 В, просело напряжение на этом выходе блока, ШИМ-контроллер попробовал вытянуть его на прежний уровень... и тем самым одновременно увеличил напряжение на выходе +5 В.

Изначально в компьютерных блоках питания для получения нескольких более-менее стабильных выходных напряжений с одного трансформатора использовалась схема групповой стабилизации:



Групповая стабилизация


Чтобы более-менее сбалансировать разные выходы, в конструкцию блока вводится дроссель L1, так называемый дроссель групповой стабилизации - на одном сердечнике наматываются несколько обмоток, по штуке на каждое выходное напряжение. При увеличении тока через одну обмотку в остальных наводится отрицательное напряжение, отчасти компенсирующее описанное выше увеличение выходных напряжений соответствующих им шин.

В результате, мы получаем блок питания с несколькими выходами, который, несмотря на наличие всего одного регулирующего элемента (ШИМ-контроллера и управляемого им транзистора Q1), поддерживает все выходные напряжения на более-менее постоянном уровне. Тем не менее, при сильном дисбалансе нагрузки в такой схеме напряжения начинают заметно уходить от номинала.



Магнитный усилитель


Чтобы получить более стабильные выходные напряжения, несколько лет назад в блоках питания среднего и верхнего уровня стали использовать дополнительные стабилизаторы по так называемой схеме магнитного усилителя, она же схема с насыщаемым сердечником. Точнее говоря, на шине +3,3 В такие стабилизаторы используются очень давно, а в последнее время они распространились и на шину +5 В, в результате чего все три основных выходных напряжения получили независимую стабилизацию.

В схеме с магнитным усилителем дроссель групповой стабилизации разделился на два совершенно отдельных дросселя, L2 и L3, которые к стабилизации напряжений уже не имеют никакого отношения. Зато перед одним из них появился дроссель L1 специальной конструкции, поведением которого можно управлять с помощью контроллера («MagAmp control»), представляющего собой обычный маломощный линейный стабилизатор напряжения. Дроссель производит специфический эффект - он укорачивает приходящие от трансформатора T1 импульсы, причём величина этого укорачивания может меняться в реальном времени:



До и после дросселя L1


А чем короче импульсы - тем меньше напряжение на выходе блока. Соответственно, вторая обмотка трансформатора T1 должна быть намотана с запасом по числу витков, а лишнее напряжение мы «уберём» с помощью дросселя магнитного усилителя L1.

В результате мы получаем два раздельных регулятора: основной ШИМ-контроллер ориентируется только на выход +12 В и держит стабильным напряжение на нём, не обращая внимания на остальные выходы, а дополнительный магнитный усилитель регулирует напряжение +5 В. Что приятно, схема не только проста, но и эффективна - потери энергии на магнитном усилителе близки к нулю.

NB: подробнее про работу магнитных усилителей можно почитать на английском языке в статье «Magnetic Amplifier Control for Simple, Low-Cost, Secondary Regulation » (PDF, 1,5 Мбайта).

Хотя непосредственно магнитный усилитель - это дроссель L1, проще всего узнавать блоки питания с ним по крупным и прекрасно заметным L2 и L3. L1 же значительно меньше по размеру и располагается обычно рядом с силовым трансформатором.

Несмотря на способность магнитных усилителей удерживать стабильные выходные напряжения блока в пределах ±3 % от номинала при любых нагрузках, они имеют ряд недостатков. Во-первых, дополнительные дроссели (L2 и L3) достаточно громоздки, а избавиться от них нельзя - в прямоходовых преобразователях они играют важнейшую роль: в них накапливается переданная через трансформатор энергия, которая затем отдаётся в нагрузку. Во-вторых, каждое выходное напряжение блока требует собственную обмотку на трансформаторе T1, что усложняет его проектирование и изготовление - особенно с учётом, какие мощности сейчас требуется вписывать в заданные габариты.

Преобразователи постоянного тока (DC-DC), с которых мы начали этот разговор, и являются заменой магнитным усилителям:



DC-DC преобразователь


Преобразователь в данном случае образован транзисторами Q2, Q3 и дросселем L2. По сути, это полностью независимый прямоходовый импульсный преобразователь, имеющий собственный ШИМ-контроллер и способный понижать напряжение +12 В до любого нужного уровня, будь то +5 В или +3,3 В. В отличие от основного преобразователя блока, трансформатора он не имеет - он и так уже изолирован от высоковольтной части.

Преимуществ у такой схемы сразу несколько. Во-первых, DC-DC преобразователи питаются от постоянного напряжения +12 В и не требуют отдельной обмотки трансформатора - соответственно, дизайн трансформатора T1 существенно упрощается, на нём остаётся только одна вторичная обмотка. Во-вторых, они могут работать на существенно более высоких частотах, нежели основной преобразователь блока, а потому уменьшается размер дросселя L2 и ёмкости фильтрующих конденсаторов на выходе, в результате чего экономится место внутри блока питания. В-третьих, они имеют собственный независимый контроллер, а потому, как и в случае с магнитными усилителями, выходные напряжения блока регулируются независимо друг от друга, чем обеспечивается отличная их стабильность.

Почему же преобразователи постоянного тока стали использоваться только сейчас, и только в наиболее дорогих блоках? Причина проста - они дороги: микросхема ШИМ-контроллера, несколько транзисторов... Однако, полупроводниковые компоненты постепенно дешевеют, да и указанные выше преимущества в виде упрощения силового трансформатора T1 и меньшего занимаемого объёма помогают немного сэкономить - и вот уже DC-DC преобразователи стали экономически выгодны хотя бы в блоках высшей ценовой категории. Пройдёт пара лет, и они спустятся в блоки среднего класса, как ранее произошло с магнитными усилителями.

Какие преимущества даёт использование DC-DC преобразователей пользователю? Да в общем-то практически никаких. Узнать, используются ли они в данном конкретном блоке, не заглядывая внутрь, можно, но довольно трудно - как минимум, это потребует хорошего осциллографа. Они интересны и удобны для инженеров-разработчиков, а применяться стали потому, что их цена опустилась до разумного уровня.

Являются ли преобразователи постоянного тока новейшим изобретением? Разумеется, нет. Любой инженер-электронщик, чья работа хоть как-то касается импульсных источников питания, нарисует вам на ближайшей салфетке пару-тройку базовых схем, даже не задумываясь - не говоря уж о том, что блоки с такими преобразователями мы встречали и раньше, начиная с блоков SilverStone и заканчивая 1500-ваттными Xigmatek и Thermaltake .



В случае с Antec Signature мы обнаруживаем две платы с преобразователями постоянного тока между двумя радиаторами. Одна плата обеспечивает напряжение +5 В, другая - +3,3 В, питаются они обе от основного источника, рассчитанного на выходное напряжение +12 В. На фотографии хорошо видны дроссели преобразователей - вы можете оценить их скромный размер.



На выходе блока используются конденсаторы серий KZE и KZH производства United Chemi-Con.

Качество сборки блока можно охарактеризовать как великолепное: образцовая пайка, надёжное закрепление всех крупногабаритных деталей, аккуратная укладка проводов. Придраться не к чему.

Шлейфы и разъёмы


шлейфом питания материнской платы с 20+4-контактным разъёмом, длиной 54 см;
шлейфом питания процессора с 8-контактным разъёмом, длиной 55 см;
шлейфом питания процессора с 4-контактным разъёмом, длиной 56 см;



двумя шлейфами питания видеокарты с одним 6+2-контактным разъёмом на каждом, длиной по 55 см;
шлейфом с тремя разъёмами питания PATA-винчестеров и одним - дисковода, длиной 54+14+14+14 см;



шлейфом с тремя разъёмами питания SATA-винчестеров, длиной 53+15+15 см.
двумя 8-контактными разъёмами для дополнительных шлейфов;
двумя 6-контактными разъёмами для дополнительных шлейфов.


два шлейфа питания видеокарт с одним 6-контактным разъёмом на каждом, длиной по 55 см;
два шлейфа с тремя разъёмами питания PATA-винчестеров на каждом, длиной по 54+14+14 см.
два шлейфа с тремя разъёмами питания SATA-винчестеров на каждом, длиной по 57+15+15 см.

Набор разъёмов достаточен, но не более того: к блоку без использования переходников можно подключить пару видеокарт и штук шесть жёстких дисков (всего разъёмов SATA - девять, но один шлейф уйдёт на питание оптического привода, и в большинстве корпусов до корзины с винчестерами уже не дотянется). Надо заметить, что с шлейфами питания винчестеров Antec подаёт хороший пример некоторым другим производителям: на два имеющихся на блоке разъёма приходятся четыре шлейфа, два с PATA- и два с SATA-разъёмами питания, так что пользователь сам может выбрать, что ему важнее.

Паспортные параметры



Signature SG-850 рассчитан на долговременную мощность нагрузки до 829 Вт, причём 780 Вт из них он может отдавать по шине +12 В, разделённой на четыре виртуальные линии. Параметры абсолютно адекватные, ни малейшего внутреннего протеста они не вызывают.

Работа в паре с ИБП

В паре с APC SmartUPS SC 620 блок работал с нагрузкой до 380 Вт при питании от розетки, но чтобы переход на батареи был удачным, нагрузку пришлось снизить до 350 Вт. Из ИБП при этом периодически раздавались клокочущие звуки, так что назвать их с блоком совместную работу абсолютно стабильной нельзя.

Стабильность напряжений


Результат кросс-нагрузочного теста вполне характерен для блоков с независимой стабилизацией напряжений - +12 В держится идеально при любом балансе нагрузок, +3,3 В отклоняется менее чем на 3 %, и лишь отклонение напряжение +5 В слегка превышает 3 %, да и то только при предельной нагрузке на блок. Напомним, что допустимое отклонение, согласно стандарту, до 5 %, так что Signature в этом тесте показал великолепный результат.




На шине +12 В всё замечательно, а вот на +5 В и +3,3 В присутствуют заметные пульсации, причём отдельные пики превышают допустимый предел, равный 50 мВ. Впрочем, ничего по-настоящему критичного на осциллограмме не видно.

Обратите внимание, насколько по-разному выглядят пульсации на низковольтных шинах и +12 В - это следствие того, что последняя обеспечивается основным преобразователем блока, а первые имеют собственные импульсные стабилизаторы, работающие на высокой частоте.




В блоке используется вентилятор Nidec Beta SL, модель D08A-12PS3-06AH1 - к сожалению, отсутствующая на сайте компании Nidec. Несмотря на большую мощность блока, вентилятор имеет скромный типоразмер 80x80x25 мм. Он четырёхпроводной, с ШИМ-регулировкой скорости вращения, что должно обеспечить широкий рабочий диапазон скоростей.


И действительно, скорость вентилятора меняется в зависимости от нагрузки на блок более чем в три раза. При нагрузках до 400 Вт он вращается примерно на 700 об/мин, при этом блок совершенно бесшумен. Дальше скорость начинает расти по закону, близкому к линейному, но заметным шум можно назвать разве что при нагрузке выше 650 Вт. В целом же блок можно смело отнести к наиболее тихим среди присутствующих в продаже, особенно при работе на небольшой нагрузке.

Таким образом, Antec Signature в очередной раз опровергает тезис, что для тихой работы обязательно необходим большой вентилятор. Главное - не размер, а умение грамотно проектировать охлаждение.

Впрочем, надо заметить, что в корпусах с верхним расположением блока питания и недостаточно эффективным продувом внутреннего объёма при большой нагрузке блок может дополнительно подогреваться горячим воздухом, что приведёт к дальнейшему увеличению скорости вращения вентилятора - и тогда он начнёт издавать заметный свист. Поэтому с точки зрения тишины лучше выбирать корпуса с нижним расположением блока питания - но этот совет касается, впрочем, не только Antec Signature.

КПД и коэффициент мощности


КПД блока очень неплох, в широком диапазоне мощностей - от 300 до 600 Вт - он уверенно держится на уровне выше 88 %, и даже на полной нагрузке снижается лишь до 86 %. Коэффициент мощности также не подвёл, примерно на половине графика он колеблется в районе 0,99.

Дежурный источник +5Vsb


Дежурный источник в Signature рассчитан на ток до 3 А, и при полной нагрузке его напряжение всего на 0,1 В ниже номинального, что полностью в пределах допустимого.

Заключение

Что же, Antec Signature произвёл очень хорошее впечатление: отличное качество сборки, прекрасные электрические параметры, полноценный набор шлейфов и разъёмов, а также настолько тихая работа на небольших нагрузках, что остаётся лишь удивляться, как такое возможно на блоке с всего лишь 80-мм вентилятором. Неудивительно, что именно серию Signature компания Antec считает лучшей среди своей продукции, несмотря на не самую высокую мощность.

Пожалуй, единственным минусом этого блока можно назвать его цену: на момент подготовки статьи в московской рознице за рассмотренную нами 850-Вт версию пришлось бы заплатить около 10 тысяч рублей, а за 650-Вт - около 8 тысяч. Но если такая цена вам не кажется слишком высокой, то Antec Signature вас не разочарует.

Enermax Revolution 85+ ERV850EWT

Как охарактеризовал этот блок представитель самой компании Enermax, «мы постарались поставить внутрь блока столько новинок, сколько мог вместить его корпус» - и в таком свете название «Revolution» становится понятным. Блок сертифицирован на соответствие стандарту «80PLUS Silver» (КПД выше 85 % в диапазоне нагрузок от 20 % до 100 %), более того, при работе в сети 220 В его КПД может превышать 90 %. Блок способен работать при любой нагрузке, включая нулевую - чтобы избежать проблем с системами, имеющими сколь угодно эффективные механизмы снижения потребления в моменты бездействия. Кроме того, Enermax много говорит о конкретных использованных в блоке технологиях - но про наиболее интересные из них мы напишем ниже, в обсуждении схемотехники блока.

Пока что можно сказать, что, судя по описанию, Revolution 85+ - более чем достойный противник для только что рассмотренного Antec Signature.

Упаковка и комплект поставки

Блок поставляется в обычной картонной коробке довольно крупного размера, на которой указано название серии, мощность блока и основные характеристики.



Внутри коробки, помимо самого блока, находятся руководство по установке (на 11 языках), комплект съёмных шлейфов и сумочка для их хранения, а также шнур питания и четыре болтика.

Внешний вид



О том, как поработали инженеры Enermax, мы ещё узнаем, а вот дизайнеры точно потрудились на славу. Блок окрашен шершавой (не просто матовой, а именно шершавой) серой краской, а под вентилятор подложена отдельная пластина красного цвета. Такое сочетание цветов, а также сам факт, что блок не просто раскрашен, а собран из деталей разного цвета, производит хорошее впечатление - причём речь идёт не об оценке качества металла, сборки и так далее (надо заметить, всё это находится на высоте), а именно о первом взгляде.



На задней стенке находятся десять разъёмов для подключения съёмных шлейфов - рекордное, надо заметить, число. Шесть из них - для периферии, четыре - для дополнительных шлейфов питания видеокарт и процессора. Интересно, что последние сделаны с большим запасом по числу контактов, что позволяет не только запитывать от одного шлейфа по паре оконечных разъёмов, но и говорить о возможности поддержки будущих видеокарт с новыми стандартами разъёмов и большими нагрузочными токами. Разумеется, шлейфы, в случае действительного появления таких видеокарт, придётся приобретать отдельно, предварительно найдя их в продаже.

По форм-фактору разъёмы аналогичны типовым Molex Mini-Fit Jr., но для фиксации шлейфов они снабжены защёлками по бокам (у стандартного Mini-Fit Jr., как можно убедиться на примере, скажем, разъёма питания материнской платы, защёлка находится по центру длинной стороны). Это надёжно, но не очень удобно, так как при всех подключённых кабелях отжать защелки, расположенные между рядами разъёмов, трудновато.

Длина корпуса блока составляет 190 мм.

Схемотехника



Блок построен по двухтрансформаторной схеме, но немного нетипичной - это так называемая схема с синхронизированными трансформаторами. Сама по себе идея использования двух трансформаторов не нова - при большой мощности блока одиночный трансформатор трудно вписать в требующиеся габариты, поэтому логично разделить его на два половинной мощности. Возникающая тут же проблема заключается в том, как распределить нагрузку так, чтобы не попасть в ситуацию, когда один трансформатор перегружен, а второй простаивает. Эта проблема наблюдалась в блоках Enermax Galaxy DXX, у которых для стабильной работы нагрузка должна была подключаться так, чтобы каждый из двух трансформаторов работал на мощности не менее нескольких десятков ватт.

И вот здесь в дело и вступает схема синхронизации трансформаторов:



На схеме она приведена в упрощённом виде, как в высоковольтной (на самом деле каждым из трансформаторов управляют по два транзистора, что позволяет Enermax говорить об «учетверённом преобразователе»), так и в низковольтной (вместо обычных диодов в Revolution 85+ используются транзисторы, о чём мы ещё поговорим ниже) частях, но для понимания сути это несущественно.

Итак, у нас есть один ШИМ-контроллер, который управляет сразу двумя прямоходовыми преобразователями - Q1-T1 и Q2-T2. Делает он это так, что транзисторы Q1 и Q2 открываются строго поочерёдно.

У каждого из трансфоматоров имеется собственный выпрямитель, а также собственный дроссель, в котором происходит накопление энергии, но после дросселей две цепи объединяются в одну, в которой стоят привычные сглаживающие конденсаторы. Так как транзисторы Q1 и Q2 открываются и закрываются в противофазе, то и импульсы на дроссели L1 и L2 приходят в противофазе.

В результате, работа схемы на осциллограмме будет выглядеть так:



Импульсы, поочерёдно приходящие с каждого из преобразователей, складываются, не пересекаясь при этом по времени, в результате чего в точке «3» (то есть, по сути, на выходе блока питания) осциллограмма выглядит ровно так, как если бы у нас был один преобразователь, но работающий на удвоенной частоте. Мало того, что мы решили проблему балансировки нагрузки между трансформаторами - схема построена так, что каждый из них всегда обеспечивает ровно половину текущей мощности, а с точки зрения нагрузки блок вообще не отличается от однотрансформаторного - но ещё и «бесплатно» получили удвоение частоты на выходном фильтре. А чем выше частота - тем меньше можно сделать конденсаторы и дроссели, окончательно сглаживающие пульсации напряжения.

При этом просто так поднять частоту одиночного преобразователя трудно - требуются дорогие высокочастотные транзисторы, дорогие материалы для сердечника трансформатора... Здесь же инженеры Enermax одним выстрелом убили нескольких зайцев: и трансформаторы по габаритам в блок вписали, и идеальное распределение нагрузки между ними обеспечили, и выходному фильтру работу вдвое облегчили.

NB: подробнее про синхронизированные трансформаторы прочитать на английском языке в статье «Interleaving power stages - not just for buck converters any more ».

Является ли эта технология новой? В блоках питания - да. Но разработана она была не Enermax и не сейчас, в чём можно убедиться по статье из предыдущего абзаца, датированной 2004-м годом.



На выходе блока хорошо видны два одинаковых дросселя - по одному на трансформатор...



В качестве контроллера синхронного преобразователя используется микросхема UCC28220 , расположенная на небольшой дочерней плате.

Но на этом особенности схемотехники Revolution 85+ не просто не заканчиваются, а скорее только начинаются. Взглянув на радиатор, на котором обычно располагаются диодные сборки выходного выпрямителя (выше на схеме они были обозначены D1 и D2), мы обнаружим, что никаких диодных сборок там нет вообще! Вместо них стоят полевые транзисторы IRFB3307:



Дело в том, что в Revolution 85+ используются так называемые синхронные выпрямители, в которых диоды заменены транзисторами. Зачем?

Давайте посмотрим на характеристики типичного диода Шоттки, такие обычно и применяются в блоках питания - STMicro S60L40C (PDF, 55 кбайт). Нас интересует график зависимости рассеиваемой на диоде мощности от тока, то есть Fig.1 на второй странице: при постоянном токе 20 А на диоде будут теряться впустую - рассеиваться в виде тепла - более 8 Вт. Происходит это из-за того, что при протекании через диод тока на нём падает небольшое напряжение, порядка нескольких десятых долей вольта. Десятые доли вольта умножить на десятки ампер - получаются единицы ватт.

Что делает диод в выпрямителе? Открывается при одном направлении тока и закрывается при другом. Давайте заменим его на транзистор, которым будем управлять так, чтобы он имитировал работу диода - пусть это будет вышеупомянутый IRFB3307 (PDF, 357 кбайт). В открытом состоянии сопротивление его канала равно всего 5 мОм, следовательно, при токе 20 А будет выделяться мощность P=I²R = 20²×0,005 = 2 Вт. В четыре с лишним раза меньше, чем на обычном диоде! Разумеется, это идеальный случай, но представление о масштабе экономии он даёт.

Ну а заставить транзисторы переключаться в нужные моменты - уже дело техники. В самом простейшем случае их затворы подключаются прямо к обмоткам трансформатора:



Если же требуется получить более высокую эффективность управления транзисторами и, соответственно, меньшие потери энергии, то в схему вводится тот или иной контроллер синхронного выпрямителя:



NB: подробнее про использование синхронных выпрямителей можно прочитать на английском языке в статье «The Implication of Synchronous Rectifiers to the Design of Isolated, Single-Ended Forward Converters » (PDF, 433 кбайта).

Является ли схема синхронного выпрямителя для блоков питания новой? Да, несомненно - до сих пор в нашей лаборатории не было подобных моделей. Является ли она изобретением Enermax? «Например, можно с уверенностью прогнозировать, что рано или поздно во вторичных цепях компьютерных блоков питания начнут использоваться синхронные выпрямители – ничего особенно нового в этой технологии нет, известна она давно, просто пока что слишком дорога, и обеспечиваемые ею преимущества не покрывают затраты» - писал я ещё в 2006-м году . Что ж, вот время и пришло.



Посмотрев ещё раз на внутренности Enermax Revolution 85+, мы замечаем необычайно большое число разных мелких компонентов на плате с выходными разъёмами...



Это оказываются наши старые знакомые, уже подробно рассмотренные в описании схемотехники Antec Signature - преобразователи постоянного тока, с помощью которых из напряжения +12 В получаются +5 В и +3,3 В. Инженеры Enermax по полной программе использовали их преимущества, вообще убрав эти преобразователи с основной платы блока и целиком разместив их рядом с разъёмами - действительно, чего задняя стенка зря пустует.



В качестве контроллеров преобразователей используются микросхемы Anpec APW7073 . Рядом расположены и силовые транзисторы, причём греются они настолько слабо, что даже не нуждаются в радиаторе - его роль с успехом выполняет медная фольга платы, к которой транзисторы припаяны.



На обратной стороне платы распаяны дроссели (по одному на каждый преобразователь) и сглаживающие конденсаторы. Тут же рядом находятся и разъёмы для съёмных шлейфов, на которые, в числе прочего, вырабатываемые преобразователями напряжения и подаются.



Есть в Enermax Revolution 85+ и другие ухищрения - например, вот такая перемычка, соединяющая две части одной и той же дорожки, и нужная для уменьшения её общего сопротивления, а значит, и потерь энергии. Но они уже не столь принципиальны, а потому куда менее интересны.

Шлейфы и разъёмы

Блок оборудован следующими шлейфами и разъёмами:

шлейфом питания материнской платы с 24-контактным разъёмом, длиной 53 см;
шлейфом питания процессора с 8-контактным разъёмом, длиной 59 см;
шлейфом питания процессора с 4+4-контактным разъёмом, длиной 59 см;
двумя шлейфами питания видеокарты с одним 6+2-контактным разъёмом на каждом, длиной по 59 см;
шлейфом тахометра вентилятора, длиной 55 см;
четырьмя разъёмами для шлейфов питания видеокарт;
шестью разъёмами для шлейфов питания накопителей.

В комплекте с ним также поставляются:



два шлейфа питания видеокарт с двумя 6+2-контактными разъёмами на каждом, длиной по 50 см;
шлейф с тремя разъёмами питания PATA-винчестеров и одним - дисковода, длиной 45+10+10+10 см;
шлейф с тремя разъёмами питания PATA-винчестеров, длиной 45+10+10 см;



три шлейфа с четырьмя разъёмами питания SATA-винчестеров на каждом, длиной по 46+10+10+10 см.

Что же, хотя изрядная часть разъёмов на блоке питания осталась незадействованной, полученный набор всё равно впечатляет: шесть 6+2-контактных (sic!) разъёмов питания видеокарт, шесть разъёмов питания PATA-винчестеров, 12 разъёмов питания SATA-винчестеров... Кажется, проблем с подключением чего-либо у владельца Revolution 85+ в обозримом будущем не будет.

Паспортные параметры



Полная мощность блока составляет 850 Вт, при этом производитель обещает, что с такой нагрузкой блок может работать при температуре воздуха 50 °C неограниченно долгое время. По шине +12 В блок может отдать до 840 Вт; эта шина разделена на шесть линий - виртуальных, так как, несмотря на наличие двух трансформаторов, как уже было сказано выше, с точки зрения подключённой нагрузки Revolution 85+ из-за особенностей своей схемотехники ничем не отличается от обычных однотрансформаторных блоков и не накладывает никаких специфических ограничений.

Работа в паре с ИБП

В паре с APC BackUPS SC 620 работал с нагрузкой до 385 Вт при питании от сети и до 350 Вт - от батарей. Переход на батареи происходил нормально, ИБП работал абсолютно стабильно, издавая лишь лёгкое жужжание.

Стабильность напряжений


Независимая стабилизация обеспечивает ожидаемо прекрасный результат: напряжения +12 В и +3,3 В укладываются в 3-процентный допуск, отклонение напряжения +5 В лишь немного превышает 3 %, да и то - при предельных нагрузках.

Как вы видите, диаграмма по обеим осям построена от нуля - блок действительно способен стабильно работать при отсутствующей нагрузке.

Пульсации выходных напряжений



Картина похожа на то, что мы уже видел у Antec Signature: достаточно заметные высокочастотные колебания с отдельными узкими всплесками. Впрочем, ничего критичного нет.

Регулировка скорости вентилятора



В блоке используется вентилятор Globe Fan RL4Z типоразмера 135x135x25 мм. Это обычный вентилятор с трёхпроводным подключением, в отличие от 4-проводных моделей блоков Enermax MODU82+ и PRO82+ . У блока есть выход тахометра, который можно подключить к материнской плате и контролировать скорость вентилятора из BIOS или с помощью соответствующих утилит.


Скорость вентилятора держится на уровне порядка 700 об/мин при нагрузке вплоть до 550 Вт, после чего начинает линейно расти. Тем не менее, даже при максимальной нагрузке она достигла лишь 1120 об/мин, что позволяет назвать Revolution 85+ очень тихим блоком питания.

Кроме того, производитель уверяет, что конструкция корпуса блока с загнутыми внутрь краями металла по периметру отверстия вентилятора дополнительно снижает уровень шума на 1-2 дБ. К сожалению, пока что у нас нет возможности измерить уровень шума напрямую с устраивающей нас точностью.

После выключения блока вентилятор продолжает вращаться на небольшой скорости в течение 45 секунд.

КПД и коэффициент мощности


Рекордный результат - Enermax Revolution 85+ стал первым блоком питания в нашей лаборатории, превысившим 90-процентный барьер КПД! И главную роль в этом, скорее всего, сыграл подробно описанный нами выше синхронный выпрямитель - блок, в котором он используется в основном преобразователе, также в нашу лабораторию попадает впервые.

Дежурный источник +5Vsb


В отличие от большинства конкурентов, в Revolution 85+ дежурный источник позволяет нагружать себя током до 5 А. Справляется со своей задачей он без проблем: при полной нагрузке напряжение на выходе равно 4,87 В при минимально допустимом 4,75 В.

Заключение

Трудно сказать, революция это или эволюция - но создать нечто действительно новое и оригинальное с технической точки зрения инженерам Enermax удалось: этот блок способен удивить не только внешним видом, но и электронной начинкой. Сейчас возможности Revolution 85+ могут даже показаться избыточными - достаточно посмотреть на количество неиспользуемых разъёмов для подключения съёмных шлейфов - однако в Enermax подчёркивают, что они пытались создать платформу, рассчитанную не только на сегодняшний день, но и на обозримое будущее, вместив в неё всё лучшее, что позволяет современная электроника. И, похоже, им это удалось.

Помимо морального удовлетворения от обладания одним из наиболее технически совершенных блоков питания, Enermax Revolution 85+ обеспечивает своему владельцу хорошее качество изготовления, отличные электрические параметры, богатый набор шлейфов и тихую работу во всём диапазоне нагрузок, вплоть до максимальных 850 Вт.

Основным же минусом является, как вы наверняка уже догадались, цена - на данный момент в Москве Revolution 85+ мощностью 850 Вт можно приобрести за 12 тысяч рублей; правда, на день подготовки материала его предлагал всего один магазин, так что в дальнейшем цена может упасть. Сам Enermax рекомендует стоимость 309 долларов США или 229 евро, без учёта налогов.

Seasonic M12D SS-850EM

Хотя компания Seasonic не делает столь же амбициозных заявлений, как Enermax, но по ряду параметров её блок питания M12D вполне может поспорить с Revolution 85+ - он также сертифицирован по стандарту «80PLUS Silver», а его КПД может достигать 90 %. К слову, недавно Seasonic представила линейку блоков меньшей мощности, сертифицированных по ещё более жёсткому «80PLUS Gold».

Из прочих особенностей M12D, интересных для нас в контексте сегодняшней статьи, можно отметить использование DC-DC преобразователей, о которых мы подробно писали выше, рассказывая про Antec Signature.

Упаковка и комплект поставки



Блок поставляется в небольшой коробке яркой оранжево-чёрной раскраски, на обратной стороне которой приведены основные характеристики. В комплекте вы найдёте съёмные шлейфы, мешочек для их хранения, руководство по установке, шнур питания, болтики и наклейку на корпус системного блока.

Внешний вид



Блок выполнен в обычном для продукции Seasonic корпусе, окрашенном в матовый чёрный цвет. Ярким пятном выделяется разве что серебристо-синяя этикетка на решётке вентилятора.



На задней стенке блока расположены шесть разъёмов типа Molex Mini-Fit Jr. для подключения съёмных шлейфов, четыре для периферии и два - для видеокарт. Не очень удобно, что все разъёмы сделаны одного цвета; впрочем, так как они имеют разное число контактов, случайно перепутать шлейф невозможно.

Схемотехника



На первый взгляд, блок выглядит совершенно обычно, отличаясь от предыдущих моделей Seasonic разве что другой формой радиаторов - два из них приобрели очень широкие «лепестки», третий же, на котором расположены силовые элементы активного PFC, стал меньше и почти потерялся на общем фоне.

Блок выполнен по однотрансформаторной схеме, в качестве контроллера активного PFC и основного стабилизатора выступает микросхема Champion Micro CM6802 (PDF, 338 кбайт).



Впрочем, самое для нас интересное скрывается за проводами - узкая алюминиевая пластинка, стоящая сбоку от большого радиатора, оказывается собственным радиатором преобразователя постоянного тока, обеспечивающего напряжения +3,3 В и +5 В.

Компания Seasonic любезно предоставила нам этот преобразователь, так что, чтобы на него полюбоваться, разбирать блок до основания нам не пришлось:



На лицевой стороне находятся два дросселя - по одному на каждое выходное напряжение - и фильтрующие конденсаторы. Обратите внимание на габариты: немудрено, что производители предпочли использовать столь компактные платы вместо дополнительных дросселей магнитных усилителей.



Обратная сторона модуля закрыта радиатором - без него преобразователь, тесно зажатый в узком промежутке между шлейфами и большим радиатором блока, перегрелся бы. Впрочем, радиатор легко снимается:



Перед нами предстают два уже знакомых ШИМ-контроллера Anpec APW7073 , а также семь транзисторов - это и есть управляющая и силовая части DC-DC преобразователя. Он полностью автономен: можно взять такую платку отдельно от блока питания, подключить к ней +12 В - и она заработает, выдавая на выход +5 В и +3,3 В.



На выходе блока - точнее, в 12-вольтовой шине - используются конденсаторы United Chemi-Con серии KZE.

Шлейфы и разъёмы

Блок оборудован следующими шлейфами и разъёмами:

шлейфом питания материнской платы с 20+4-контактным разъёмом, длиной 52 см;
шлейфом питания процессора с 8-контактным разъёмом, длиной 56 см;
шлейфом питания процессора с 4-контактным разъёмом, длиной 52 см;
двумя шлейфами питания видеокарт с одним 6+2-контактным разъёмом на каждом, длиной по 59 см;
шлейфом с тремя разъёмами питания SATA-винчестеров, длиной 32+14+14 см;
двумя разъёмами для шлейфов питания видеокарт;
четырьмя разъёмами для шлейфов питания накопителей.

В комплекте с ним также поставляются:

два шлейфа питания видеокарт с двумя 6+2-контактными разъёмами на каждом, длиной по 55 см;
шлейф с тремя разъёмами питания PATA-винчестеров, длиной 55+15+15 см;
шлейф с тремя разъёмами питания PATA-винчестеров, длиной 45+15+15 см;
шлейф с двумя разъёмами питания PATA-винчестеров, длиной 36+15 см;
шлейф с тремя разъёмами питания SATA-винчестеров, длиной 55+15+15 см;
шлейф с тремя разъёмами питания SATA-винчестеров, длиной 45+15+15 см;
шлейф с двумя разъёмами питания SATA-винчестеров, длиной 35+15 см;
переходник с одного разъёма питания PATA-винчестера на два разъёма питания дисководов, длиной 15 см.

Хотя по длине списка может показаться, что M12D - самый богатый на разъёмы блок питания из рассмотренных в сегодняшней статье, это не совсем так. Он - самый удобный. Производитель вместо пачки одинаковых шлейфов приложил набор, в котором каждый шлейф имеет свою длину, так что вы можете, в зависимости от используемого корпуса, выбрать наиболее подходящие.

Впрочем, и на количество жаловаться не приходится: шесть разъёмов питания видеокарт, 12 - SATA-винчестеров, восемь - PATA-винчестеров... трудно представить систему, которой этого не хватит.

Паспортные параметры



Блок рассчитан на долговременную мощность нагрузки до 850 Вт, из которых 840 Вт он может отдавать по шине +12 В, разделённой на две виртуальные линии.

Работа в паре с ИБП

В паре с ИБП APC SmartUPS SC 620 блок работает с нагрузкой до 360 Вт при питании как от сети, так и от батарей. Переход на батареи происходит нормально, ИБП работает стабильно.

Стабильность напряжений


Увы, но, несмотря на независимую стабилизацию выходных напряжений, M12D оказался единственным в сегодняшней статье блоком, показавшим отличный от идеального результат: напряжение +5 В довольно заметно менялось в зависимости от нагрузки, и в итоге вышло за допустимые пределы.

Впрочем, в реальном компьютере всё будет в порядке - проблема наблюдается только при большой нагрузке на эту шину, а такого в современных системах, где почти всё потребление приходится на +12 В, не бывает.

Пульсации выходных напряжений



Зато результат по пульсациям у блока великолепный - их практически не видно ни на одной из трёх контролируемых шин, разве что на +12 В проскакивают отдельные всплески.

Регулировка скорости вентилятора



В блоке установлен вентилятор Sanyo Denki San Ace 120, типоразмера 120x120x25 мм. Помимо немного необычной формы лопастей, мы заметили ещё одну интересную вещь:



Нет, речь не об открытом подшипнике - смазать его всё равно не получится, да это и не надо, так как у шарикоподшипников смазка находится внутри и наружу не вытекает. Речь об идущих по кольцу выемках, две из которых частично залиты коричневым лаком. Неужели производитель вентилятора дополнительно балансирует каждый его экземпляр, доливая каплю лака с той стороны крыльчатки, которая из-за несовершенства технологического процесса окажется легче? Невероятно, но уж больно похоже.


При нагрузке до 500 Вт скорость вентилятора держалась на уровне 800 об/мин, после чего начала расти. При малых и средних нагрузках блок работает очень тихо, но примерно при 650 Вт звук вентилятора становится хорошо заметен, а на мощности, близкой к максимальной, попросту громок. Тем не менее, так как собрать компьютер, остальные комплектующие которого были бы тихими при такой нагрузке, проблематично, M12D можно с полным правом считать малошумным блоком питания.

КПД и коэффициент мощности


Эх, совсем чуть-чуть не хватило до рекорда! Блок достиг впечатляющего КПД 90 % (при мощности нагрузки около 400 Вт), но до показанного Enermax Revolution 85+ уровня один процент всё-таки не дотянул. Тем не менее, результат превосходный, и на данный момент в нашей лаборатории побывал только один блок питания, способный его перекрыть.

Дежурный источник +5Vsb


Дежурный источник блока рассчитан на ток до 3 А, и со своей задачей справляется без проблем: напряжение держится в пределах нормы.

Заключение

Хотя после Revolution 85+ блок Seasonic выглядит не столь впечатляюще, на деле он практически не отстаёт от конкурентов в лице Enermax и Antec - пусть один из них технологически совершенен, но что нам, пользователям, до того совершенства, если параметры на выходе всё равно примерно одинаковы?

По последним же в вину M12D можно поставить разве что не очень стабильные напряжения. Других нареканий на этот блок нет: низкий уровень пульсаций, высочайший КПД, прекрасный набор шлейфов и тихая работа на маленьких и средних нагрузках делают его отличным выбором для домашнего компьютера.

На момент подготовки статьи Seasonic M12D в Москве не продавался. Рекомендованная цена блока в США - 299 долларов.

Заключение

В общем-то, трудно было ожидать от блоков, которые три именитых производителя считают лучшими моделями в своих продуктовых линейках, плохих результатов. И действительно, Antec Signature, Enermax Revolution 85+ и Seasonic M12D не продемонстрировали ни одного сколь-нибудь серьёзного технического недостатка: мощные, качественно сделанные, с хорошими электрическими параметрами и тихой работой, прекрасно подходящие для компьютеров верхнего уровня, в том числе, оснащённых двумя-тремя видеокартами. В общем-то, больше сказать здесь нечего - какой бы блок из трёх вы ни выбрали, он вас не разочарует. В минус им можно записать - причём опять же всем трём сразу - разве что немалую цену.

Если же говорить о новейших технологиях, то здесь резко выделяется Enermax Revolution 85+ - это первый блок питания среди побывавших у нас на тестах, который смог продемонстрировать КПД выше 90 %. Двухтрансформаторная схема с идеальной балансировкой и способностью работать с любой нагрузкой от нуля ватт, синхронный выпрямитель на шине +12 В (впервые в нашей практике!), независимые преобразователи постоянного тока - инженеры Enermax действительно серьёзно вложились в разработку этого блока. Если вы интересуетесь силовой электроникой и хотите посмотреть на пути развития блоков компьютерных питания в ближайшем будущем, то Revolution 85+ - хороший пример.

Две другие модели, Antec Signature и Seasonic M12D, в схемотехническом плане более обычны: их разработчики вместо революционных нововведений предпочли оттачивать уже известные и использующиеся технологии (даже DC-DC преобразователи мы видели «вживую» более двух лет тому назад). Догнать Enermax по продемонстрированным параметрам им не удалось, но и отставание невелико - КПД этих блоков меньше на 1-3 %, вентиляторы немного шумнее под большой нагрузкой, по остальным же пунктам разницы и вовсе нет.

В целом же, уделив столь большое внимание схемотехнике блоков питания, мы хотели донести до вас две мысли. Во-первых, компьютерные блоки питания не стоят на месте, они развиваются и совершенствуются, и заключается это развитие отнюдь не только в изменении формы отверстий вентиляционной решётки и цвета подсветки вентилятора. Появляются новые контроллеры, увеличиваются рабочие частоты, одни схемотехнические решения сменяются другими... Между двумя блоками питания, выпущенными с разницей десять лет, нет уже практически ничего общего, хотя, на первый взгляд, детали стоят примерно того же цвета и формы. Во-вторых, несмотря на это, стоит несколько скептически относиться к заявлениям производителей о новейших, только-только изобретённых и со всех сторон запатентованных технологиях. Те или иные новые узлы в серийно производимых блоках питания появляются тогда, когда это оказывается экономически выгодно. Взять хотя бы магнитные усилители: они давным-давно используются в качестве стабилизаторов шины +3,3 В, вы найдете такой стабилизатор в любом приличном 250-ваттном ATX-блоке конца прошлого века, но лишь в последние годы, когда у блоков питания резко выросла нагрузочная способность шины +12 В, использование двух магнитных усилителей - то, что мы называем «независимая стабилизация выходных напряжений» - получило смысл. Точно так же происходит и с прочими технологиями: они существуют, но до какого-то времени отдача от их использования попросту не покрывает затрат.

Чего мы можем ожидать в будущем? Ну, например, цифровых программируемых ШИМ-контроллеров, алгоритм работы которых позволяет адаптироваться «на лету» под разные типы нагрузки. Они уже существуют , но от широкого использования в блоках питания пока далеки, по причинам как несовершенства технологии, так и высокой стоимости. И это, разумеется, не единственный пример.

Другие материалы по данной теме


1500-Вт блоки питания: Xigmatek и Thermaltake
Блоки питания Chieftec
Такие разные корпуса Antec: Mini P180 и NSK6580B



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные