1 признак параллельных прямых. Признаки параллельности двух прямых. Свойства параллельных прямых. Аксиома параллельных прямых

Параллельность – очень полезное свойство в геометрии. В реальной жизни параллельные стороны позволяют создавать красивые, симметричные вещи, приятные любому глазу, поэтому геометрия всегда нуждалась в способах эту параллельность проверить. О признаках параллельных прямых мы и поговорим в этой статье.

Определение для параллельности

Выделим определения, которые необходимо знать для доказательства признаков параллельности двух прямых.

Прямые называют параллельными, если они не имеют точек пересечения. Кроме того, в решениях обычно параллельные прямые идут в связке с секущей линией.

Секущей прямой называется прямая, которая пересекает обе параллельные прямые. В этом случае образуются накрест лежащие, соответственные и односторонние углы. Накрест лежащими будут пары углов 1 и 4; 2 и 3; 8 и 6; 7 и 5. Соответственными будут 7 и 2; 1 и 6; 8 и 4; 3 и 5.

Односторонними 1 и 2; 7 и 6; 8 и 5; 3 и 4.

При правильном оформлении пишется: «Накрест лежащие углы при двум параллельных прямых а и b и секущей с», потому что для двух параллельных прямых может существовать бесконечное множество секущих, поэтому необходимо указывать, какую именно секущую, вы имеете в виду.

Также для доказательства понадобится теорема о внешнем угле треугольника, которая гласит, что внешний угол треугольника равен сумме двух углов треугольника несмежных с ним.

Признаки

Все признаки параллельных прямых завязаны на знание свойств углов и теорему о внешнем угле треугольника.

Признак 1

Две прямые параллельны, если накрест лежащие углы равны.

Рассмотрим две прямые а и b с секущей с. Накрест лежащие углы 1 и 4 равны. Предположим, что прямые не параллельны. Значит прямые пересекаются и должна быть точка пересечения М. Тогда образуется треугольник АВМ с внешним углом 1. Внешний угол должен быть равен сумме углов 4 и АВМ как несмежных с ним по теореме о внешнем угле в треугольнике. Но тогда получится, что угол 1 больше угла 4, а это противоречит условию задачи, значит, точки М не существует, прямые не пересекаются, то есть параллельны.

Рис. 1. Рисунок к доказательству.

Признак 2

Две прямые параллельны, если соответственные углы при секущей равны.

Рассмотрим две прямые а и b с секущей с. Соответственные углы 7 и 2 равны. Обратим внимание на угол 3. Он является вертикальным для угла 7. Значит, углы 7 и 3 равны. Значит, углы 3 и 2 также равны, так как <7=<2 и <7=<3. А угол 3 и угол 2 являются накрест лежащими. Следовательно, прямые параллельны, что и требовалось доказать.

Рис. 2. Рисунок к доказательству.

Признак 3

Две прямые параллельны, если сумма односторонних углов равна 180 градусам.

Рис. 3. Рисунок к доказательству.

Рассмотрим две прямые а и b с секущей с. Сумма односторонних углов 1 и 2 равна 180 градусов. Обратим внимание на углы 1 и 7. Они являются смежными. То есть:

$$<1+<7=180$$

$$<1+<2=180$$

Вычтем из первого выражения второе:

$$(<1+<7)-(<1+<2)=180-180$$

$$(<1+<7)-(<1+<2)=0$$

$$<1+<7-<1-<2=0$$

$$<7-<2=0$$

$<7=<2$ - а они являются соответственными. Значит, прямые параллельны.

Что мы узнали?

Мы в подробностях разобрали, какие углы получаются при рассечении параллельных прямых третьей линией, выделили и подробно расписали доказательство трех признаков параллельности прямых.

Тест по теме

Оценка статьи

Средняя оценка: 4.1 . Всего получено оценок: 220.


Эта статья о параллельных прямых и о параллельности прямых. Сначала дано определение параллельных прямых на плоскости и в пространстве, введены обозначения, приведены примеры и графические иллюстрации параллельных прямых. Далее разобраны признаки и условия параллельности прямых. В заключении показаны решения характерных задач на доказательство параллельности прямых, которые заданы некоторыми уравнениями прямой в прямоугольной системе координат на плоскости и в трехмерном пространстве.

Навигация по странице.

Параллельные прямые – основные сведения.

Определение.

Две прямые на плоскости называются параллельными , если они не имеют общих точек.

Определение.

Две прямые в трехмерном пространстве называются параллельными , если они лежат в одной плоскости и не имеют общих точек.

Обратите внимание, что оговорка «если они лежат в одной плоскости» в определении параллельных прямых в пространстве очень важна. Поясним этот момент: две прямые в трехмерном пространстве, которые не имеют общих точек и не лежат в одной плоскости не являются параллельными, а являются скрещивающимися.

Приведем несколько примеров параллельных прямых. Противоположные края тетрадного листа лежат на параллельных прямых. Прямые, по которым плоскость стены дома пересекает плоскости потолка и пола, являются параллельными. Железнодорожные рельсы на ровной местности также можно рассматривать как параллельные прямые.

Для обозначения параллельных прямых используют символ «». То есть, если прямые а и b параллельны, то можно кратко записать а b .

Обратите внимание: если прямые a и b параллельны, то можно сказать, что прямая a параллельна прямой b , а также, что прямая b параллельна прямой a .

Озвучим утверждение, которое играет важную роль при изучении параллельных прямых на плоскости: через точку, не лежащую на данной прямой, проходит единственная прямая, параллельная данной. Это утверждение принимается как факт (оно не может быть доказано на основе известных аксиом планиметрии), и оно называется аксиомой параллельных прямых.

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых (ее доказательство Вы можете найти в учебнике геометрии 10-11 класс, который указан в конце статьи в списке литературы).

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых.

Параллельность прямых - признаки и условия параллельности.

Признаком параллельности прямых является достаточное условие параллельности прямых, то есть, такое условие, выполнение которого гарантирует параллельность прямых. Иными словами, выполнение этого условия достаточно для того, чтобы констатировать факт параллельности прямых.

Также существуют необходимые и достаточные условия параллельности прямых на плоскости и в трехмерном пространстве.

Поясним смысл фразы «необходимое и достаточное условие параллельности прямых».

С достаточным условием параллельности прямых мы уже разобрались. А что же такое «необходимое условие параллельности прямых»? По названию «необходимое» понятно, что выполнение этого условия необходимо для параллельности прямых. Иными словами, если необходимое условие параллельности прямых не выполнено, то прямые не параллельны. Таким образом, необходимое и достаточное условие параллельности прямых – это условие, выполнение которого как необходимо, так и достаточно для параллельности прямых. То есть, с одной стороны это признак параллельности прямых, а с другой стороны – это свойство, которым обладают параллельные прямые.

Прежде чем сформулировать необходимое и достаточное условие параллельности прямых, целесообразно напомнить несколько вспомогательных определений.

Секущая прямая – это прямая, которая пересекает каждую из двух заданных несовпадающих прямых.

При пересечении двух прямых секущей образуются восемь неразвернутых . В формулировке необходимого и достаточного условия параллельности прямых участвуют так называемые накрест лежащие, соответственные и односторонние углы . Покажем их на чертеже.

Теорема.

Если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180 градусам.

Покажем графическую иллюстрацию этого необходимого и достаточного условия параллельности прямых на плоскости.


Доказательства этих условий параллельности прямых Вы можете найти в учебниках геометрии за 7 -9 классы.

Заметим, что эти условия можно использовать и в трехмерном пространстве – главное, чтобы две прямые и секущая лежали в одной плоскости.

Приведем еще несколько теорем, которые часто используются при доказательстве параллельности прямых.

Теорема.

Если две прямые на плоскости параллельны третьей прямой, то они параллельны. Доказательство этого признака следует из аксиомы параллельных прямых.

Существует аналогичное условие параллельности прямых в трехмерном пространстве.

Теорема.

Если две прямые в пространстве параллельны третьей прямой, то они параллельны. Доказательство этого признака рассматривается на уроках геометрии в 10 классе.

Проиллюстрируем озвученные теоремы.

Приведем еще одну теорему, позволяющую доказывать параллельность прямых на плоскости.

Теорема.

Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.

Существует аналогичная теорема для прямых в пространстве.

Теорема.

Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.

Изобразим рисунки, соответствующие этим теоремам.


Все сформулированные выше теоремы, признаки и необходимые и достаточные условия прекрасно подходят для доказательства параллельности прямых методами геометрии. То есть, чтобы доказать параллельность двух заданных прямых нужно показать, что они параллельны третьей прямой, или показать равенство накрест лежащих углов и т.п. Множество подобных задач решается на уроках геометрии в средней школе. Однако следует отметить, что во многих случаях удобно пользоваться методом координат для доказательства параллельности прямых на плоскости или в трехмерном пространстве. Сформулируем необходимые и достаточные условия параллельности прямых, которые заданы в прямоугольной системе координат.

Параллельность прямых в прямоугольной системе координат.

В этом пункте статьи мы сформулируем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от вида уравнений, определяющих эти прямые, а также приведем подробные решения характерных задач.

Начнем с условия параллельности двух прямых на плоскости в прямоугольной системе координат Oxy . В основе его доказательства лежит определение направляющего вектора прямой и определение нормального вектора прямой на плоскости.

Теорема.

Для параллельности двух несовпадающих прямых на плоскости необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, или нормальные векторы этих прямых были коллинеарны, или направляющий вектор одной прямой был перпендикулярен нормальному вектору второй прямой.

Очевидно, условие параллельности двух прямых на плоскости сводится к (направляющих векторов прямых или нормальных векторов прямых) или к (направляющего вектора одной прямой и нормального вектора второй прямой). Таким образом, если и - направляющие векторы прямых a и b , а и - нормальные векторы прямых a и b соответственно, то необходимое и достаточное условие параллельности прямых а и b запишется как , или , или , где t - некоторое действительное число. В свою очередь координаты направляющих и (или) нормальных векторов прямых a и b находятся по известным уравнениям прямых.

В частности, если прямую a в прямоугольной системе координат Oxy на плоскости задает общее уравнение прямой вида , а прямую b - , то нормальные векторы этих прямых имеют координаты и соответственно, а условие параллельности прямых a и b запишется как .

Если прямой a соответствует уравнение прямой с угловым коэффициентом вида , а прямой b - , то нормальные векторы этих прямых имеют координаты и , а условие параллельности этих прямых примет вид . Следовательно, если прямые на плоскости в прямоугольной системе координат параллельны и могут быть заданы уравнениями прямых с угловыми коэффициентами, то угловые коэффициенты прямых будут равны. И обратно: если несовпадающие прямые на плоскости в прямоугольной системе координат могут быть заданы уравнениями прямой с равными угловыми коэффициентами, то такие прямые параллельны.

Если прямую a и прямую b в прямоугольной системе координат определяют канонические уравнения прямой на плоскости вида и , или параметрические уравнения прямой на плоскости вида и соответственно, то направляющие векторы этих прямых имеют координаты и , а условие параллельности прямых a и b записывается как .

Разберем решения нескольких примеров.

Пример.

Параллельны ли прямые и ?

Решение.

Перепишем уравнение прямой в отрезках в виде общего уравнения прямой: . Теперь видно, что - нормальный вектор прямой , а - нормальный вектор прямой . Эти векторы не коллинеарны, так как не существует такого действительного числа t , для которого верно равенство (). Следовательно, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, поэтому, заданные прямые не параллельны.

Ответ:

Нет, прямые не параллельны.

Пример.

Являются ли прямые и параллельными?

Решение.

Приведем каноническое уравнение прямой к уравнению прямой с угловым коэффициентом: . Очевидно, что уравнения прямых и не одинаковые (в этом случае заданные прямые были бы совпадающими) и угловые коэффициенты прямых равны, следовательно, исходные прямые параллельны.

Второй способ решения.

Сначала покажем, что исходные прямые не совпадают: возьмем любую точку прямой , например, (0, 1) , координаты этой точки не удовлетворяют уравнению прямой , следовательно, прямые не совпадают. Теперь проверим выполнение условия параллельности этих прямых. Нормальный вектор прямой есть вектор , а направляющий вектор прямой есть вектор . Вычислим и : . Следовательно, векторы и перпендикулярны, значит, выполненяется необходимое и достаточное условие параллельности заданных прямых. Таким образом, прямые параллельны.

Ответ:

Заданные прямые параллельны.

Чтобы доказать параллельность прямых в прямоугольной системе координат в трехмерном пространстве пользуются следующим необходимым и достаточным условием.

Теорема.

Для параллельности несовпадающих прямых в трехмерном пространстве необходимо и достаточно, чтобы их направляющие векторы были коллинеарны.

Таким образом, если известны уравнения прямых в прямоугольной системе координат в трехмерном пространстве и нужно ответить на вопрос параллельны эти прямые или нет, то нужно найти координаты направляющих векторов этих прямых и проверить выполнение условия коллинеарности направляющих векторов. Другими словами, если и - направляющие векторы прямых a заданных прямых имеют координаты и . Так как , то . Таким образом, выполнено необходимое и достаточное условие параллельности двух прямых в пространстве. Этим доказана параллельность прямых и .

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

В этой статье мы расскажем о параллельных прямых, дадим определения, обозначим признаки и условия параллельности. Для наглядности теоретического материала будем использовать иллюстрации и решение типовых примеров.

Определение 1

Параллельные прямые на плоскости – две прямые на плоскости, не имеющие общих точек.

Определение 2

Параллельные прямые в трехмерном пространстве – две прямые в трехмерном пространстве, лежащие в одной плоскости и не имеющие общих точек.

Необходимо обратить внимание, что для определения параллельных прямых в пространстве крайне важно уточнение «лежащие в одной плоскости»: две прямые в трехмерном пространстве, не имеющие общих точек и не лежащие в одной плоскости, являются не параллельными, а скрещивающимися.

Чтобы обозначить параллельность прямых, общепринято использовать символ ∥ . Т.е., если заданные прямые a и b параллельны, кратко записать это условие нужно так: a ‖ b . Словесно параллельность прямых обозначается следующим образом: прямые a и b параллельны, или прямая а параллельна прямой b , или прямая b параллельна прямой а.

Сформулируем утверждение, играющее важную роль в изучаемой теме.

Аксиома

Через точку, не принадлежащую заданной прямой проходит единственная прямая, параллельная заданной. Это утверждение невозможно доказать на базе известных аксиом планиметрии.

В случае, когда речь идет о пространстве, верна теорема:

Теорема 1

Через любую точку пространства, не принадлежащую заданной прямой, будет проходить единственная прямая, параллельная заданной.

Эту теорему просто доказать на базе вышеуказанной аксиомы (программа геометрии 10 - 11 классов).

Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.

В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.

Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.

Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.

Определение 3

Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.

Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:

Теорема 2

Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.

Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:

Доказательство указанных условий присутствует в программе геометрии за 7 - 9 классы.

В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.

Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.

Теорема 3

На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.

Теорема 4

В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.

Доказательство признака изучается в программе геометрии 10 класса.

Дадим иллюстрацию указанных теорем:

Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.

Теорема 5

На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Сформулируем аналогичное для трехмерного пространства.

Теорема 6

В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.

Проиллюстрируем:

Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е., чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д. Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.

Параллельность прямых в прямоугольной системе координат

В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.

Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.

Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.

Теорема 7

Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.

Становится очевидно, что условие параллельности прямых на плоскости базируется на условии коллинеарности векторов или условию перпендикулярности двух векторов. Т.е., если a → = (a x , a y) и b → = (b x , b y) являются направляющими векторами прямых a и b ;

и n b → = (n b x , n b y) являются нормальными векторами прямых a и b , то указанное выше необходимое и достаточное условие запишем так: a → = t · b → ⇔ a x = t · b x a y = t · b y или n a → = t · n b → ⇔ n a x = t · n b x n a y = t · n b y или a → , n b → = 0 ⇔ a x · n b x + a y · n b y = 0 , где t – некоторое действительное число. Координаты направляющих или прямых векторов определяются по заданным уравнениям прямых. Рассмотрим основные примеры.

  1. Прямая a в прямоугольной системе координат определяется общим уравнением прямой: A 1 x + B 1 y + C 1 = 0 ; прямая b - A 2 x + B 2 y + C 2 = 0 . Тогда нормальные векторы заданных прямых будут иметь координаты (А 1 , В 1) и (А 2 , В 2) соответственно. Условие параллельности запишем так:

A 1 = t · A 2 B 1 = t · B 2

  1. Прямая a описывается уравнением прямой с угловым коэффициентом вида y = k 1 x + b 1 . Прямая b - y = k 2 x + b 2 . Тогда нормальные векторы заданных прямых будут иметь координаты (k 1 , - 1) и (k 2 , - 1) соответственно, а условие параллельности запишем так:

k 1 = t · k 2 - 1 = t · (- 1) ⇔ k 1 = t · k 2 t = 1 ⇔ k 1 = k 2

Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны. И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.

  1. Прямые a и b в прямоугольной системе координат заданы каноническими уравнениями прямой на плоскости: x - x 1 a x = y - y 1 a y и x - x 2 b x = y - y 2 b y или параметрическими уравнениями прямой на плоскости: x = x 1 + λ · a x y = y 1 + λ · a y и x = x 2 + λ · b x y = y 2 + λ · b y .

Тогда направляющие векторы заданных прямых будут: a x , a y и b x , b y соответственно, а условие параллельности запишем так:

a x = t · b x a y = t · b y

Разберем примеры.

Пример 1

Заданы две прямые: 2 x - 3 y + 1 = 0 и x 1 2 + y 5 = 1 . Необходимо определить, параллельны ли они.

Решение

Запишем уравнение прямой в отрезках в виде общего уравнения:

x 1 2 + y 5 = 1 ⇔ 2 x + 1 5 y - 1 = 0

Мы видим, что n a → = (2 , - 3) - нормальный вектор прямой 2 x - 3 y + 1 = 0 , а n b → = 2 , 1 5 - нормальный вектор прямой x 1 2 + y 5 = 1 .

Полученные векторы не являются коллинеарными, т.к. не существует такого значения t , при котором будет верно равенство:

2 = t · 2 - 3 = t · 1 5 ⇔ t = 1 - 3 = t · 1 5 ⇔ t = 1 - 3 = 1 5

Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.

Ответ: заданные прямые не параллельны.

Пример 2

Заданы прямые y = 2 x + 1 и x 1 = y - 4 2 . Параллельны ли они?

Решение

Преобразуем каноническое уравнение прямой x 1 = y - 4 2 к уравнению прямой с угловым коэффициентом:

x 1 = y - 4 2 ⇔ 1 · (y - 4) = 2 x ⇔ y = 2 x + 4

Мы видим, что уравнения прямых y = 2 x + 1 и y = 2 x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.

Попробуем решить задачу иначе. Сначала проверим, совпадают ли заданные прямые. Используем любую точку прямой y = 2 x + 1 , например, (0 , 1) , координаты этой точки не отвечают уравнению прямой x 1 = y - 4 2 , а значит прямые не совпадают.

Следующим шагом определим выполнение условия параллельности заданных прямых.

Нормальный вектор прямой y = 2 x + 1 это вектор n a → = (2 , - 1) , а направляющий вектором второй заданной прямой является b → = (1 , 2) . Скалярное произведение этих векторов равно нулю:

n a → , b → = 2 · 1 + (- 1) · 2 = 0

Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.

Ответ: данные прямые параллельны.

Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.

Теорема 8

Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.

Т.е. при заданных уравнениях прямых в трехмерном пространстве ответ на вопрос: параллельны они или нет, находится при помощи определения координат направляющих векторов заданных прямых, а также проверки условия их коллинеарности. Иначе говоря, если a → = (a x , a y , a z) и b → = (b x , b y , b z) являются направляющими векторами прямых a и b соответственно, то для того, чтобы они были параллельны, необходимо существование такого действительного числа t , чтобы выполнялось равенство:

a → = t · b → ⇔ a x = t · b x a y = t · b y a z = t · b z

Пример 3

Заданы прямые x 1 = y - 2 0 = z + 1 - 3 и x = 2 + 2 λ y = 1 z = - 3 - 6 λ . Необходимо доказать параллельность этих прямых.

Решение

Условиями задачи заданы канонические уравнения одной прямой в пространстве и параметрические уравнения другой прямой в пространстве. Направляющие векторы a → и b → заданных прямых имеют координаты: (1 , 0 , - 3) и (2 , 0 , - 6) .

1 = t · 2 0 = t · 0 - 3 = t · - 6 ⇔ t = 1 2 , то a → = 1 2 · b → .

Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.

Ответ: параллельность заданных прямых доказана.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение 1

Прямую $с$ называют секущей для прямых $а$ и $b$, если она пересекает их в двух точках.

Рассмотрим две прямые $a$ и $b$ и секущую прямую $с$.

При их пересечении возникают углы, которые обозначим цифрами от $1$ до $8$.

У каждого из этих углов есть название, которое часто приходиться употреблять в математике:

  • пары углов $3$ и $5$, $4$ и $6$ называются накрест лежащими ;
  • пары углов $1$ и $5$, $4$ и $8$, $2$ и $6$, $3$ и $7$ называют соответственными ;
  • пары углов $4$ и $5$, $5$ и $6$ называют односторонними .

Признаки параллельности прямых

Теорема 1

Равенство пары накрест лежащих углов для прямых $a$ и $b$ и секущей $с$ говорит о том, что прямые $a$ и $b$ – параллельны:

Доказательство .

Пусть накрест лежащие углы для прямых $а$ и $b$ и секущей $с$ равны: $∠1=∠2$.

Покажем, что $a \parallel b$.

При условии, что углы $1$ и $2$ будут прямыми, получим, что прямые $а$ и $b$ будут перпендикулярными относительно прямой $АВ$, а значит – параллельными.

При условии, что углы $1$ и $2$ не являются прямыми, проведем из точки $О$ – середины отрезка $АВ$, перпендикуляр $ОН$ к прямой $а$.

На прямой $b$ отложим отрезок $BH_1=AH$ и проведем отрезок $OH_1$. Получаем два равных треугольника $ОНА$ и $ОH_1В$ по двум сторонам и углу между ними ($∠1=∠2$, $АО=ВО$, $BH_1=AH$), поэтому $∠3=∠4$ и $∠5=∠6$. Т.к. $∠3=∠4$, то точка $H_1$ лежит на луче $ОН$, таким образом точки $Н$, $О$ и $H_1$ принадлежат одной прямой. Т.к. $∠5=∠6$, то $∠6=90^{\circ}$. Таким образом, прямые $а$ и $b$ являются перпендикулярными относительно прямой $HH_1$ являются параллельными. Теорема доказана.

Теорема 2

Равенство пары соответственных углов для прямых $a$ и $b$ и секущей $с$ говорит о том, что прямые $a$ и $b$ – параллельны:

если $∠1=∠2$, то $a \parallel b$.

Доказательство .

Пусть соответственные углы для прямых $а$ и $b$ и секущей $с$ равны: $∠1=∠2$. Углы $2$ и $3$ являются вертикальными, поэтому $∠2=∠3$. Значит $∠1=∠3$. Т.к. углы $1$ и $3$ – накрест лежащие, то прямые $а$ и $b$ являются параллельными. Теорема доказана.

Теорема 3

Если сумма двух односторонних углов для прямых $a$ и $b$ и секущей $с$ равна $180^{\circ}C$, то прямые $a$ и $b$ – параллельны:

если $∠1+∠4=180^{\circ}$, то $a \parallel b$.

Доказательство .

Пусть односторонние углы для прямых $а$ и $b$ и секущей $с$ в сумме дают $180^{\circ}$, например

$∠1+∠4=180^{\circ}$.

Углы $3$ и $4$ являются смежными, поэтому

$∠3+∠4=180^{\circ}$.

Из полученных равенств видно, что накрест лежащие углы $∠1=∠3$, из чего следует, что прямые $а$ и $b$ являются параллельными.

Теорема доказана.

Из рассмотренных признаков вытекает параллельность прямых.

Примеры решения задач

Пример 1

Точка пересечения делит отрезки $АВ$ и $CD$ пополам. Доказать, что $AC \parallel BD$.

Дано : $AO=OB$, $CO=OD$.

Доказать : $AC \parallel BD$.

Доказательство .

Из условия задачи $AO=OB$, $CO=OD$ и равенства вертикальных углов $∠1=∠2$ согласно I-му признаку равенства треугольников следует, что $\bigtriangleup COA=\bigtriangleup DOB$. Таким образом, $∠3=∠4$.

Углы $3$ и $4$ – накрест лежащие при двух прямых $AC$ и $BD$ и секущей $AB$. Тогда согласно I-му признаку параллельности прямых $AC \parallel BD$. Утверждение доказано.

Пример 2

Дан угол $∠2=45^{\circ}$, а $∠7$ в $3$ раза больше данного угла. Доказать, что $a \parallel b$.

Дано : $∠2=45^{\circ}$, $∠7=3∠2$.

Доказать : $a \parallel b$.

Доказательство :

  1. Найдем значение угла $7$:

$∠7=3 \cdot 45^{\circ}=135^{\circ}$.

  1. Вертикальные углы $∠5=∠7=135^{\circ}$, $∠2=∠4=45^{\circ}$.
  2. Найдем сумму внутренних углов $∠5+∠4=135^{\circ}+45^{\circ}=180^{\circ}$.

Согласно III-му признаку параллельности прямых $a \parallel b$. Утверждение доказано.

Пример 3

Дано : $\bigtriangleup ABC=\bigtriangleup ADB$.

Доказать : $AC \parallel BD$, $AD \parallel BC$.

Доказательство :

У рассматриваемых рисунков сторона $АВ$ – общая.

Т.к. треугольники $АВС$ и $ADB$ равны, то $AD=CB$, $AC=BD$, а также соответствующие углы равны $∠1=∠2$, $∠3=∠4$, $∠5=∠6$.

Пара углов $3$ и $4$ – накрест лежащие для прямых $АС$ и $BD$ и соответствующей секущей $АВ$, поэтому согласно I-му признаку параллельности прямых $AC \parallel BD$.

Пара углов $5$ и $6$ – накрест лежащие для прямых $AD$ и $BC$ и соответствующей секущей $АВ$, поэтому согласно I-му признаку параллельности прямых $AD \parallel BC$.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные