Дезинфекторы воздуха для больших помещений. Эффективные методы и средства, которые помогут продезинфицировать квартиру и обеззаразить воздух. Минусы бактерицидных рециркуляторов

Думаете, что рециркуляторы воздуха – исключительно медицинское оборудование? А вот и нет! Разбираемся, почему они нужны не только в больницах, и рассказываем, как устроена функция рециркуляции в бризере 3S.

Что такое рециркулятор воздуха

Рециркулятор – это прибор для очистки и обеззараживания воздуха. Воздух из помещения поступает в рециркулятор, внутри него проходит очистку и подается обратно в помещение – другими словами, проходит по кругу, циркулирует.

Следуя логике названия, рециркулятором можно считать любое устройство, которое заставляет воздух циркулировать и попутно очищает его от загрязнителей. Однако на практике слово “рециркулятор” чаще всего используется по отношению к высокоэффективным приборам – профессиональному оборудованию либо бытовым устройствам с системой фильтрации, не уступающей медицинским стандартам. Вряд ли можно услышать, чтобы рециркулятором называли обычную мойку воздуха.

Рециркуляторы воздуха широко используются в больницах и клиниках. Медицинские рециркуляторы, как правило, не просто очищают, но и обеззараживают воздух. В чем разница?

Об обеззараживании можно говорить только тогда, когда прибор устраняет из воздуха органические загрязнители – вирусы, инфекции, бактерии. Если же устройство справляется в основном только с механическими частицами (пыль, пух, шерсть, песок и т.п.), то такой прибор очищает, но не обеззараживает. Рециркуляторы, которые могут уничтожать микроорганизмы, называются бактерицидными.

Бактерицидные рециркуляторы существенно снижают риск заражения воздушно-капельным путем и, как следствие, сокращают заболеваемость. Вот почему они так востребованы в любом медицинском учреждении, где количество инфекций в воздухе зашкаливает.

Однако представление о рециркуляторах как строго больничных устройствах давно устарело. Современные рециркуляторы используются в различных учреждениях.

Наглядный пример – детский сад. Много детей, длительное пребывание, замкнутое пространство, контактные игры… В таких условиях любой подхвативший простуду малыш мгновенно заражает всех вокруг. Бактерицидный рециркулятор в этом случае – одна из самых надежных мер инфекций. Насколько эффективна эта мера? По результатам одного из наших , рециркулятор снижает заболеваемость до 45%.

Поэтому рециркуляторы нередко можно увидеть в офисах, банках, парикмахерских, спортивных залах, кафе, ресторанах, гостиницах. С точки зрения бизнеса, использование обеззараживателей позволяет уменьшить издержки на больничные и уберечь от авралов налаженную работу коллектива. Обычно выгоднее купить рециркулятор, чем потратить эти деньги на покрытие убытков от потрясений рабочего процесса. В некоторых случаях применение рециркуляторов помогает продемонстрировать заботу о посетителях и становится конкурентным преимуществом.

В домах и квартирах бактерицидные рециркуляторы особенно востребованы теми семьями, где есть дети, пожилые люди, аллергики. Даже при ослабленном иммунитете рециркулятор повышает вероятность избежать заражения, если кто-то из домочадцев подхватил инфекцию.

Виды рециркуляторов воздуха

Условно все бактерицидные рециркуляторы для обеззараживания можно разделить на два типа – с УФ-лампами и без них .

Рециркуляторы с УФ-лампами составляют весьма многочисленную группу. Воздух из комнаты засасывается в корпус прибора при помощи вентилятора и подвергается УФ-облучению, которое губительно для микроорганизмов. Обеззараженный таким образом воздух подается обратно в комнату.

Многие современные УФ-обеззараживатели не требуют изоляции и могут использоваться в присутствии людей. Однако они все же имеют ряд неудобств. Во-первых, УФ-лампы не устраняют из воздуха механические и химические загрязнения, т.е. не очищают его от пыли, грязи, шерсти, твердых частиц, газов. Во-вторых, УФ-рециркуляторы требуют осторожности в обращении. Протирать ртутные УФ-лампы следует аккуратно, чтобы не разбить. Кстати, протирать их придется регулярно: они должны быть чистыми, иначе эффективность упадет. В-третьих, когда УФ-лампы выходят из строя, их нужно специально утилизировать.

В рециркуляторах воздуха без УФ-ламп обеззараживание основано на иных принципах. Один из них – активная НЕРА фильтрация, наша собственная технология, просим любить и жаловать 🙂 Эта технология была создана изначально для профессионального медицинского оборудования, но позже была адаптирована и для массового рынка.

Технология активной НЕРА фильтрации используется в бытовом очистителе-обеззараживателе . Обеззараживание воздуха осуществляется при помощи озона. Озон вырабатывается в электростатическом блоке и поступает на высокоэффективный НЕРА фильтр. «Пойманные» НЕРА фильтром микроорганизмы под действием озона теряют способность размножаться. Из прибора выходит очищенный безопасный воздух. А сам фильтр при этом остается стерильным.

Озон не попадает в помещение – следующий за НЕРА фильтром угольный фильтр разлагает его на безопасные составляющие.

Большое преимущество очистителя-обеззараживателя перед УФ-рециркуляторами заключается в том, что воздух очищается не только от органических, но и от механических загрязнений. При этом рециркулятор Tion Clever совершенно безвреден для людей (наоборот – исключительно полезен 🙂), потому что озон никогда не выходит из прибора. Фильтры Tion Clever не требуют специальной утилизации, можно просто выбросить их, как обычный мусор.

Функция рециркуляции

Функция рециркуляции есть у некоторых компактных приточных устройств для дома. Например, у нашего

Описание:

Показатель заболеваемости, обусловленный микробиологическим загрязнением воздушной среды помещений, на сегодняшний момент остается на высоком уровне. Большинство патогенных микроорганизмов передается воздушным и воздушно-капельным путем. Особенно остро эта проблема стоит в местах большого скопления людей и крытых плохо вентилируемых помещениях, а также в помещениях с рециркуляцией воздуха. Предотвращение распространения заболеваний – основная задача процесса обеззараживания воздуха. В статье рассмотрены современные методы борьбы с патогенной микрофлорой в помещениях.

Современные методы обеззараживания воздуха в помещениях

Показатель заболеваемости, обусловленный микробиологическим загрязнением воздушной среды помещений, на сегодняшний момент остается на высоком уровне. Большинство патогенных микроорганизмов передается воздушным и воздушно-капельным путем. Особенно остро эта проблема стоит в местах большого скопления людей и крытых плохо вентилируемых помещениях, а также в помещениях с рециркуляцией воздуха. Предотвращение распространения заболеваний – основная задача процесса обеззараживания воздуха. В статье рассмотрены современные методы борьбы с патогенной микрофлорой в помещениях.

Ультрафиолетовое излучение (ультрафиолет, UV, УФ) – это электромагнитное излучение, охватывающее диапазон длин волн от 100 до 400 нм оптического спектра электромагнитных колебаний, то есть между видимым и рентгеновским излучением. Виды ультрафиолетового излучения представлены в табл. 1.

Применение в настоящее время ультрафиолетовой энергии становится все более актуальным, поскольку является одним из главных методов инактивации вирусов, бактерий и грибков. Под инактивацией микроорганизмов понимают потерю их способности к размножению после стерилизации или дезинфекции .

Бактерицидным действием обладает ультрафиолетовое излучение с диапазоном длин волн 205–315 нм, оно вызывает деструктивно-модифицирующее фотохимическое повреждение ДНК клеточного ядра микроорганизма. Изменения в ДНК микроорганизмов накапливаются и приводят к замедлению темпов их размножения и дальнейшему вымиранию в первом и последующем поколениях. В результате ряда наблюдений было отмечено, что воздействие энергии в диапазоне спектра UVC наиболее эффективно с бактерицидной точки зрения при длине волны в 254 нм.

Живые микробные клетки по-разному реагируют на ультрафиолетовое излучение в зависимости от длин волн (табл. 2).

Таблица 1
Виды ультрафиолетового излучения
Наименование Аббревиатура Длина
волны, нм
Количество
энергии на
фотон, эВ
Ближний NUV 400-300 3,10-4,13
Средний MUV 300-200 4,13-6,20
Дальний FUV 200-122 6,20-10,2
Экстремальный EUV, XUV 121-10 10,2-124
Вакуумный VUV 200-10 6,20-124
Ультрафиолет А,
длинноволновой диапазон,
черный свет
UVA 400-315 3,10-3,94
Ультрафиолет В (средний диапазон) UVB 315-280 3,94-4,43
Ультрафиолет С,
коротковолновой,
гермицидный диапазон
UVC 280-100 4,43-12,4
Таблица 2
Восприимчивость микроорганизмов к воздействию УФ-излучения
Более восприимчивы Группа микроорганизмов Представитель группы
Вегетативные бактерии Staphylococcus aureus
Streptococcus progenies
Escherichia coli
Pseudomonas aeruginosa
Serratia marcescens
Микобактерии Mycobacterium tuberculosis
Mycobacterium bovis
Mycobacterium leprae
Споры бактерий Bacillus anthracis
Bacillus cereus
Bacillus subtilis
Грибковые споры Aspergillus versicolor
Penicillium chrysogenum
Менее восприимчивы Stachybotrys chartarum

Ультрафиолетовое излучательное оборудование

Ультрафиолетовое бактерицидное облучение воздушной среды производится с помощью ультрафиолетового излучательного оборудования, принцип действия которого основан на пропускании электрического разряда через разреженный газ (включая пары ртути), находящийся внутри герметичного корпуса, в результате чего происходит излучение.

Излучательное оборудование – это бактерицидные лампы, облучатели и установки. Бактерицидная лампа – искусственный источник излучения, в спектре которого имеется преимущественно бактерицидное излучение в диапазоне длин волн 205–315 нм. Наибольшее распространение, благодаря высокоэффективному преобразованию электрической энергии в излучение, получили разрядные ртутные лампы низкого давления, в которых процесс электрического разряда в аргоно-ртутной смеси переходит в излучение с длиной волны 253,7 нм. Эти лампы имеют большой срок службы – 5 000– 8 000 часов. Известны ртутные лампы высокого давления, которые при небольших габаритных размерах обладают большой единичной мощностью – от 100 до 1 000 Вт, что позволяет в отдельных случаях уменьшить число облучателей в бактерицидной установке. С другой стороны, они мало экономичны, имеют низкую бактерицидную эффективность при сроке службы, в 10 раз меньшем по сравнению с лампами низкого давления, и поэтому не нашли широкого применения.

Разработкой и производством УФ-ламп для установок фотобиологического действия в настоящее время занимается ряд крупнейших электроламповых фирм (Philips, Osram, Radium, Sylvania и др.).

В России известны производители: ОАО «Лисма-ВНИИИС» (Саранск), НПО «ЛИТ» (Москва), ОАО СКБ «Ксенон» (Зеленоград), ООО «ВНИСИ» (Москва). Номенклатура ламп достаточно широка и разнообразна. Ультрафиолетовые лампы применяются для стерилизации воды, воздуха и поверхностей.

Для более рационального использования на практике бактерицидных ламп их целесообразно встраивать в бактерицидные облучатели. Бактерицидный облучатель – это электротехническое устройство, состоящее из бактерицидной лампы (ламп), пускорегулирующего аппарата, отражательной арматуры и ряда других вспомогательных и элементов. По конструктивному исполнению облучатели подразделяются на три группы: открытые, комбинированные и закрытые. Открытые облучатели обычно крепятся к потолку или настенно, комбинированные – к стене и могут быть с отражателями или без них. У открытых облучателей прямой бактерицидный поток охватывает широкую зону в пространстве вплоть до телесного угла. Они предназначаются для процесса обеззараживания помещений только в отсутствии людей или при их кратковременном пребывании. У закрытых облучателей, их иногда называют рециркуляторами, лампы располагаются в небольшом замкнутом корпусе облучателя и бактерицидный поток не имеет выхода за пределы корпуса, поэтому облучатели могут применяться, когда в помещении находятся люди. Энергия бактерицидного потока дезактивирует большинство вирусов и бактерий, попадающих во внутренний блок вместе с воздушным потоком. В корпусе облучателя предусмотрены диффузоры, через которые с помощью встроенного вентилятора воздух поступает внутрь прибора, где попадает под источник УФ-излучения в замкнутом пространстве внутреннего блока, после чего возвращается в помещение. Закрытые облучатели размещают, как правило, на стенах помещений, равномерно по периметру, по ходу движения основных потоков воздуха (часто вблизи отопительных приборов) на высоте 1,5–2,0 м от уровня пола.

Комбинированные облучатели обычно снабжаются двумя бактерицидными лампами, разделенными между собой экраном так, чтобы поток от одной лампы направлялся только в нижнюю зону помещения, от другой – в верхнюю зону. Лампы могут включаться вместе и по отдельности.

Бактерицидная установка включает в себя группу бактерицидных облучателей. Также это может быть система приточно-вытяжной вентиляции, в элементы которой встраиваются бактерицидные лампы для подачи в помещение обеззараженного воздуха. Уровень бактерицидной эффективности установки задается в соответствии с медико-техническим заданием на ее проектирование.

Длительность работы бактерицидной установки, при которой достигается требуемый уровень бактерицидной эффективности, различна в зависимости от типа облучателя: для закрытых облучателей 1–2 часа; для открытых и комбинированных 0,25–0,5 часа; для систем приточно-вытяжной вентиляции 1 час и более.

Отдельным классом приборов является бактерицидное оборудование в составе установки приточной вентиляции (кондиционирования воздуха), позволяющее не устанавливать приборы в отдельных помещениях, а обслуживать целые этажи. Это так называемые блоки обеззараживания воздуха. Они выпускаются в составе кондиционеров общепромышленного, медицинского и гигиенического исполнения. В комплектацию блока обеззараживания обычно входят модуль обеззараживания воздуха, состоящий из конкретного количества бактерицидных ламп и воздушный фильтр.

Для определенных помещений существуют требования по необходимости обеззараживания воздуха. В табл. 3 приведен перечень типов помещений, подлежащих оборудованию бактерицидными установками обеззараживания воздуха, с указанием бактерицидной эффективности . Наиболее важными объектами с этой позиции являются больничные учреждения, в которых необходимость обеззараживания воздуха строго регламентирована . Также вопросы обеззараживания воздуха в помещениях лечебно-профилактических учреждений освящены в .

Помещения, в которых размещают бактерицидные установки, подразделяют на две группы:

– в которых обеззараживание воздуха осуществляется в присутствии людей в течение рабочего дня ультрафиолетовыми установками с закрытыми облучателями, исключающими возможность облучения людей, находящихся в помещении;

– в которых обеззараживание воздуха осуществляется в отсутствии людей бактерицидными установками с открытыми или комбинированными облучателями, при этом предельное время пребывания людей в помещении определяется расчетом.

Работа бактерицидных ламп может сопровождаться выделением озона. Наличие озона в воздушной среде в высоких концентрациях опасно для здоровья человека, поэтому помещения, где размещаются установки, должны проветриваться либо системами общеобменной приточно-вытяжной вентиляции, либо через оконные проемы с интенсивностью воздухообмена не менее одного крата за 15 минут.

Таблица 3
Уровни бактерицидной эффективности и объемной бактерицидной дозы (экспозиции) Hv для S. aureus в зависимости от категорий помещений, подлежащих оборудованию бактерицидными установками для обеззараживания воздуха
Кате-
гория
Типы помещений Нормы микробной
обсемененности
КОЕ*, 1 м 3
Бактери-
цидная
эффектив-
ность J бK , %,
не менее
Объемная
бактерицид-
ная доза
Hv, Дж/м 3
(значения
справочные)
общая
микрофлора
S. aureus
1 2 3 4 5 6
I Операционные, предоперационные, родильные, стерильные зоны ЦСО**, детские палаты роддомов, палаты для недоношенных и травмированных детей Не выше 500 Не должно
быть
99,9 385
II Перевязочные, комнаты стерилизации и пастеризации грудного молока, палаты и отделения иммуноослабленных больных, палаты реанимационных отделений, помещения нестерильных зон ЦСО, бактериологические и вирусологические лаборатории, станции переливания крови, фармацевтические цеха Не выше
1000
Не более 4 99 256
III Палаты, кабинеты и другие помещения ЛПУ (не включенные в I и II категории) Не
норми-
руется
Не
норми-
руется
95 167
IV Детские игровые комнаты, школьные классы, бытовые помещения промышленных и общественных зданий с большим скоплением людей при длительном пребывании -«- -«- 90 130
V Курительные комнаты, общественные туалеты и лестничные площадки помещений ЛПУ -«- -«- 85 105

* КОЕ - колониеобразующие единицы.
** ЦСО - централизованные стерилизационные отделения.

Бактерицидная доза и бактерицидная (антимикробная) эффективность

Работа бактерицидных ламп характеризуется радиометрическими величинами. Основными из них являются бактерицидная доза и бактерицидная эффективность. От бактерицидной дозы зависит степень дезинфекции воздуха или поверхностей. Под бактерицидной дозой (дозой ультрафиолетового излучения) или экспозицией следует понимать плотность бактерицидной энергии излучения, или отношение энергии бактерицидного излучения к площади облучаемой поверхности (поверхностная доза, Дж/м 2) или объему облучаемого объекта (объемная доза, Дж/м 3) .

Результативность облучения микроорганизмов, или бактерицидная (антимикробная) эффективность – это уровень снижения микробной обсемененности воздушной среды или на какой-либо поверхности в результате воздействия ультрафиолетового излучения. Эта величина оценивается в процентах – как отношение числа погибших микроорганизмов к их начальному числу до облучения. Бактерицидная эффективность ламп зависит преимущественно от дозы излучения (D UV , Дж/м 2), подаваемого на микроорганизмы:

D UV = It, (1)

где I – средняя интенсивность или доза облучения, Дж/см 2 ;

t – время воздействия, с.

Применение этого простого на вид уравнения довольно сложно при учете дозы для частицы, проходящей через устройство с переменной плотностью потока. Уравнение описывает процесс облучения частицы дозой, получаемой за один проход через устройство. При повторном воздействии облучения на микроорганизмы (рециркуляции) бактерицидная эффективность увеличивается в два раза.

Коэффициент выживания микробной или колониеобразующей единицы (КОЕ), подверженной воздействию бактерицидного облучения, экспоненциально зависит от дозы:

где k – постоянная дезактивации (инактивации), зависящая от конкретного вида КОЕ м 2 /Дж;

Полученный коэффициент инактивации частицы за один ее проход (η) через поле излучения, используется как показатель общей эффективности излучения и показывает процент или долю КОЕ, инактивированных после одного прохода через поле облучения, а также зависит от S и всегда меньше 1:

η = 1−S. (3)

Значения параметра k для многих видов бактерий, грибков, плесени получены экспериментальным путем и могут отличаться друг от друга на несколько порядков. Это связано с методами и условиями проведения измерений: в воздушном потоке, в воде или на поверхности они производятся. На показания k сильно влияет погрешность измерения уровня выживания микробной культуры. В связи с этим, выбрать правильное значения k для условий проектирования систем бактерицидного облучения очень трудно, и, как правило, к применению уравнения 2 принимается среднее или максимальное из известных значений k в зависимости от целей обеззараживания.

Стандарты по проектированию и технической эксплуатации бактерицидных ламп

Несмотря на то, что область применения технологий УФ-облучения постоянно расширяется и разрабатываются современные эффективно работающие системы, отраслевых стандартов по установке и техническому обслуживанию систем пока не существует. В 2003 году ASHRAE была создана специальная группа по ультрафиолетовой обработке воздуха и поверхностей, преобразованная в 2007 году в Технический комитет. Кроме того, был создан Комитет по стандартизации для разработки стандартов по испытанию систем обеззараживания воздуха и поверхностей. На сегодняшний день в стадии разработки находятся два стандарта по обработке воздуха и поверхностей УФ-излучением и испытанию систем обеззараживания воздуха. Также в этом году в руководстве ASHRAE по системам и климатическому оборудованию зданий появился новый раздел, посвященный обеззараживанию ультрафиолетовым излучением.

В нашей стране в начале 1990-х годов был разработан ряд документов по нормированию технических требований к медицинскому оборудованию , а также были введены в действие два документа: в 2004 году «Руководство по использованию ультрафиолетового бактерицидного излучения для обеззараживания воздуха в помещениях» и в 2002 году «Руководство по проектированию ультрафиолетовых бактерицидных установок для обеззараживания воздушной среды» . В 2004 году Минздрав России принял Постановление «Об организации и проведении очистки и дезинфекции систем вентиляции и кондиционирования воздуха» . Одним из основных его положений является требование по оснащению систем вентиляции и кондиционирования воздуха бактерицидным оборудованием на основе современных ультрафиолетовых технологий.

Канальные системы обеззараживания воздуха

Встроенные бактерицидные системы рекомендуется устанавливать внутри воздуховодов или корпуса приточных установок для обеззараживания внутренних поверхностей и воздуха, подаваемого в помещение (рис. 1). В этом случае происходит или мгновенная инактивация микроорганизмов, или замедление роста их числа. Особую опасность представляют зоны образования и накопления влаги, например, сливные поддоны. Рекомендуется применение фильтров сверхтонкой очистки (ГОСТ Р 51252-99. Фильтры очистки воздуха. Классификация. Маркировка), несмотря на то, что они имеют высокие гидравлическое сопротивление, стоимость и короткий срок службы.

Системы обеззараживания поверхностей

Перед началом работы систем обеззараживания следует проводить очистку поверхностей, особенно имеющих контакт с влагой, от плесени или микробных отложений. Рекомендуется монтаж бактерицидных ламп производить в непосредственной близости от охлаждающих контуров с шагом, позволяющим равномерно распределять УФ-энергию. Для повышения эффективности работы ламп используются отражающие устройства (рис. 2). Способы установки ламп могут быть различны: до или после охлаждающего контура и под любым углом, важно только, чтобы УФ-энергия проникала во все точки оребрения воздухоохладителей. Чаще применяют второй способ из-за наличия, во-первых, доступного свободного места, во-вторых – из-за возможности открытого облучения сливного поддона.

Места размещения ламп зависят от конструкции приточной установки и типа применяемых ламп, наиболее распространена установка ламп на расстоянии 0,9–1,0 м от контура охлаждения при их круглосуточной работе. Непрерывное воздействие УФ-облучения обеспечивает поступление дозы ультрафиолетового излучения, необходимой для пре-дотвращения развития микроорганизмов при низкой интенсивности излучения.

Обеззараживание воздуха

Работа бактерицидных систем, достаточная для обеззараживания поверхностей, не всегда эффективна в случае обеззараживания воздуха. Хотя правильно спроектированные системы способны обрабатывать и воздух, и поверхности одновременно. Они обычно не оснащаются отражательными устройствами, блокирующими поступление ультрафиолетовой энергии (рис. 3). Возможно повышение производительности системы за счет улучшения общей отражательной способности внутренних поверхностей воздуховодов или приточных установок. Это приводит к усиленному отражению УФ-энергии в зону облучения и повышению УФ-дозы. Основная цель использования ламп заключается в равномерности распределении УФ-энергии во всех направлениях инженерных конструкций, независимо от их типа.

При проектировании бактерицидных систем скорость движения воздуха в каналах воздуховодов следует принимать в размере 2,5 м/с. При этих условиях длительность воздействия УФ-облучения на воздушный поток составляет 1 с. Интересно, что требуемая доза УФ-облучения для инактивации микроорганизмов, содержащихся и на поверхности, и в воздушном потоке, одинакова. Для достижения процесса инактивации за более короткое время требуются более высокие уровни облучения. Для этого повышают отражательную способность внутренних поверхностей воздуховодов и (или) принимают к установке большее число ламп больших мощностей.

Скорости воздуха 2,5 м/с соответствует длина зоны облучения не менее 0,6 м или время воздействия облучения на микроорганизмы, равное 0,25 с. Обычно бактерицидные облучатели располагают в приточных установках после контуров нагревания (охлаждения). Есть случаи установки ламп перед воздухонагревателем (охладителем), что приводит к уменьшению скорости воздушного потока или увеличению времени воздействия облучателей, к тому же затрудняется обеззараживание дренажного поддона.

Бактерицидные системы с совместной работой систем приточно-вытяжной вентиляции рекомендуется применять в помещениях с постоянным пребыванием большого числа людей либо групп людей со сниженным иммунным барьером (больниц, тюрем, приютов), для предотвращения распространения воздушно-капельных инфекций (например, стафилококка, стрептококка, туберкулеза, гриппа и т. д.) в режиме постоянной работы. В помещениях с отсутствием людей в ночное время, например, в офисных зданиях, торговых центрах и т. д., возможно использование таких систем в периодическом режиме, с выключением в нерабочее время для экономии энергоресурсов и увеличения срока службы ламп. Периодический режим работы следует предусматривать уже на стадии проектирования систем, когда определяются мощности оборудования.

Системы для обеззараживания воздуха верхней зоны помещений

Излучательные системы, предназначенные для обеззараживания воздуха верхней зоны помещений, крепятся к потолку или на стенах помещения на высоте не менее 2,1 м над уровнем пола (рис. 4).

В этом случае лампы оборудуются экранами для отражения излучения вверх для интенсификации УФ-облучения верхней зоны помещения, при поддержании минимальных уровней облучения в рабочей зоне (рис. 5). Инактивация микроорганизмов происходит в период облучения воздуха, проходящего над лампами. Есть бактерицидные системы со встроенными вентиляторами для улучшения перемешивания воздуха, что сильно повышает общую эффективность работы систем.

Рисунок 5.

Принцип работы настенных бактерицидных установок для обработки воздуха верхней зоны помещения. В зависимости от высоты помещения применяются лампы открытого типа или с экранами, не допускающими попадания излучения в верхнюю зону. Лампы открытого типа обеспечивают интенсивное облучение верхней зоны помещения, сохраняя безопасный уровень УФ-облучения в рабочей зоне. Система механической вентиляции перемешивает воздух в зоне облучения. Также могут применяться облучатели потолочного типа. 1 - система обеззараживания с экранами для помещений, высотой 2,4-2,7 м; 2 - система обеззараживания для помещений высотой более 2,7 м

Системы обеззараживания воздуха потолочного или настенного типа целесообразно применять или самостоятельно при отсутствии систем приточно-вытяжной вентиляции со встроенными облучателями, или совместно с ней для более эффективной инактивации микроорганизмов. Правила применения и размещения УФ-ламп должны согласовываться с паспортом оборудования изготовителей. Как показал опыт применения облучателей, использование одной лампы номинальной мощностью в среднем 30 Вт на каждые 18,6 м 2 облучаемой поверхности является достаточным, хотя известно, что не всегда лампы такой мощности обладают одинаковой эффективностью, часто это зависит от типа, изготовителя лампы и множества различных факторов. В результате ряда новых исследований появились рекомендации к установке ламп. Главное требование – обеспечить равномерность распределения в верхней зоне помещения излучения мощностью в диапазоне 30–50 Вт/м 2 , что считается достаточным для инактивации клеток, содержащих Mycobacterium и большинства вирусов. Эффективность обеззараживания сильно повышается при перемешивании воздуха в помещении, для чего желательно использование механических систем вентиляции или хотя бы вентиляторов, устанавливаемых непосредственно в помещении.

Основные параметры, влияющие на работу систем обеззараживания

Относительная влажность

При относительной влажности более 80 % бактерицидное действие ультрафиолетового излучения падает на 30 % из-за эффекта экранирования микроорганизмов. Запыленность колб ламп и отражателей облучателя снижает значение бактерицидного потока до 10 %. При комнатной температуре и относительной влажности до 70 % этими факторами можно пренебречь. Отмечено влияние относительной влажности на поведение микроорганизмов (k-значение), хотя до конца не обосновано, поскольку исследования не дают постоянных результатов. Связь между относительной влажностью и восприимчивостью микроорганизмов зависит от их вида, но тем не менее отмечен лучший эффект инактивации при увеличении относительной влажности до 70 % и выше. Тем не менее, рекомендуется использовать данные системы при относительной влажности не выше 60 % из условия обеспечения требуемого качества воздуха и уровня микробного обсеменения. Как правило, системы для обеззараживания воздуха в помещениях работают в условиях низкой относительной влажности, канальные системы – при более высокой. Взаимосвязь уровня относительной влажности и эффективности инактивации требует дальнейшего изучения.

Температура и скорость воздуха

Изменение температуры воздуха в помещении влияет на мощность излучения ламп и УФ-дозы. При температуре окружающего воздуха менее или равно 10 или 40 °С и более значение бактерицидного потока ламп снижается на 10 % номинального. С понижением температуры помещения ниже 10 °С затрудняется зажигание ламп и увеличивается распыление электродов, что приводит к сокращению срока службы ламп. Также на срок службы влияет число включений, каждое из которых уменьшает общий срок службы ламп на 2 часа. УФ-производительность канальных систем колеблется от 100 до 60 % в зависимости от изменения температуры и скорости потока воздуха внутри воздуховода, в частности, в системах с переменных расходом, где оба параметра меняются одновременно. Влияние температуры и скорости воздуха следует учитывать при проектировании внутриканальных систем для сохранения постоянной эффективности при всех рабочих условиях. Восприимчивость микроорганизмов к излучению не зависит от температуры и скорости воздуха.

Отражательная способность облучаемых поверхностей

Улучшение отражательной способности воздуховодов повышает эффективность работы установленных внутри них систем и является очень экономичным способом, поскольку вся отраженная энергия добавляется к прямой энергии при расчете дозы УФ-облучения. Не всякая поверхность, отражающая видимый свет, отражает УФ-энергию. Например, полированная медь отражает большую часть видимого света, а ультрафиолетового – только 10 %. Отражательная способность оцинкованной стали, из которой изготавливают воздуховоды, составляет примерно 55 %. Также для повышения эффективности облучения целесообразно воздуховоды облицовывать алюминием или другими отражающими материалами.

Отражательная способность поверхностей полезна для канальных систем, но может быть опасной для потолочных, при применении которых поверхности потолков или стен должны устранять отражение УФ-лучей от поверхностей, расположенных на расстоянии 3 м и менее от открытой стороны облучателя. Отражения от поверхностей следует исключать, применяя малоотражающие краски или покрытия, но сохраняя требуемое облучение верхней зоны помещения и одновременно снижая воздействие УФ на людей в рабочей зоне помещения.

Влияние УФ-лучей на качество поверхностей

Воздействие УФ-лучей не влияет на физико-химические свойств неорганических материалов, например металла или стекла, органические материалы разрушаются достаточно быстро. Так, синтетические фильтровальные элементы, прокладки, резина, обмотки электродвигателей, электроизоляция, внутренняя изоляция воздуховодов, пластиковые трубы, расположенные на расстоянии 1,8 м и менее от ламп внутри приточных установок или воздуховодов, должны защищаться от УФ-излучения, чтобы избежать повреждения. В противном случае может нарушиться безопасность работы всей системы.

Потолочные устройства серьезно не вредят качеству строительных конструкций, за исключением шелушения краски или растрескивания покрытий. Поэтому облучаемые поверхности рекомендуется выполнять из материалов, стойких к УФ-излучеию. Бумажная продукция: книги, документы и различные предметы, хранящиеся в верхней части помещений, могут обесцвечиваться или пересыхать. Отмечались случаи негативного воздействия облучателей, расположенных в верхней зоне помещения, на растения. Эти проблемы вполне устраняются правильным техническим обслуживанием систем и удалением чувствительных к ультрафиолету предметов из зоны облучения.

Литература

1. Stephen B. Martin Jr., Chuck Dunn, James D. Freihaut, William P. Bahnfleth, Josephine Lau, Ana Nedeljkovic-Davidovic. Бактерицидное ультрафиолетовое облучение. Современные эффективные методы борьбы патогенной микрофлорой // ASHRAE JOURNAL. – 2008. – august.

2. ГОСТ 25375-82. Методы, средства и режимы стерилизации и дезинфекции изделий медицинского назначения. Термины и определения.

3. Р3.5.1904-04. Руководство. Дезинфектология. Использование ультрафиолетового бактерицидного излучения для обеззараживания воздуха в помещениях. – М., 2005.

4. СанПиН 2.1.3.1375-2003. Гигиеические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров.

5. ГОСТ Р 15.0113-94. Система разработки и постановки продукции на производство. Медицинские изделия.

6. ГОСТ Р 50267.0-92. Изделия медицинские электрические. Часть 1. Общие требования безопасности.

7. ГОСТ Р 50444-92. Приборы, аппараты и оборудование медицинское. Общие технические условия.

8. Руководство по проектированию ультрафиолетовых бактерицидных установок для обеззараживания воздушной среды помещений предприятий мясной и молочной промышленности. 69(083.75) р 84 VI. Пищепромдепартамент Минсельхоза РФ и Департамент Госсанэпиднадзора Минздрава РФ, 2002.

9. Постановление № 4 «Об организации и проведении очистки и дезинфекции систем вентиляции и кондиционирования воздуха» от 27 августа 2004 года. Министерство здравоохранения Российской Федерации.

Особые моменты которые нужно учитывать при выборе очистителей и увлажнителей воздуха для детских учреждений.

Что нужно знать о воздухе и приборах очистки при выборе оборудования для детских учреждений?

  • Приборы дезинфекции воздуха являются обязательными для установки только в медицинских кабинетах. Установка воздухоочистителей в группах детских садов рекомендуется санитарными врачами, но не является обязательной. Поэтому, чаще всего, их покупка осуществляется родителями.
  • Приборы должны иметь сертификаты соответствия. Свидетельства о регистрации для изделий медицинской техники не являются обязательными при установке приборов в спальнях и игровых комнатах.
  • При подборе воздухоочистителя необходимо учитывать, что большое количество детей в одной комнате осложняет задачу дезинфекции воздуха. Выбирайте приборы с большим запасом производительности.
  • Скорость распространения инфекции и тяжесть заболевания зависят от количества вирусов попавших в организм человека и готовности иммунитета сопротивляться патогенам.
  • Приборы очистки воздуха могут снизить концентрацию патогенной микрофлоры в атмосфере помещения в несколько раз. Эти устройства уже давно применяются в медицинских учреждениях и существенно снижают риск передачи инфекций. Но не существует приборов способных на 100 % очистить воздух от вирусов и бактерий в помещении в котором находятся люди.
  • В период эпидемий приборы дезинфекции воздуха могут значительно снизить вероятность распространение заболевания, но не менее важно обеспечить здоровую атмосферу в помещениях в которых длительное время находятся дети в течении всего года. Это усилит защитные возможности организма. Вирусы атакуют всех, но не все заболевают, а заболевшие переносят болезни по разному.
  • Грязный воздух улиц города и особенно помещений ослабляет иммунитет. Чистый воздух - усиливает.
  • Роспотребнадзор определил для дошкольных детских организаций следующие параметры воздушной среды. (СAHПИН 2.4.1.3049-13) Температура воздуха в игровой комнате не ниже 21 С. Спальне не ниже 19 С. Относительная влажность 40-60%. Кратность обмена воздуха 1,5-2,5. Проветривание 10 минут через каждые 1,5 часа. Концентрация вредных веществ воздуха в помещениях с постоянным пребыванием детей не должны превышать предельно допустимые концентрации (ПДК). Эти нормы не всегда соблюдаются по различным причинам. Особенно это касается проветривания и поддержания нужной влажности.

Какие приборы очистки воздуха могут применяться в детских садах и школах?

  • медицинские бактерицидные ультрафиолетовые облучатели - рециркуляторы.
  • медицинские фотокаталитические очистители воздуха
  • бытовые и промышленные приборы очистки воздуха в том числе ионизаторы.
  • бытовые и промышленные увлажнители воздуха.
  • медицинские увлажнители воздуха с функцией объёмной дезинфекиции.

У каждого типа приборов есть свои достоинства и недостатки. Подробнее читайте далее

Бактерицидный рециркулятор или УФ облучатель закрытого типа.

Бактерицидный рециркулятор или УФ облучатель закрытого типа - медицинский прибор для обеззараживания воздуха в присутствие людей. Применяется повсеместно в больницах. Наиболее популярный и в детских садах. Действие основано на ультрафиолетовом облучение воздуха проходящего через камеру под действием вентиляторов.

Очень простые в исполнении. Состоят из корпуса, ламп ультрафиолетового спектра, вентилятора, блоков питания и управления. Как правило имеют счётчик времени наработки ламп. Благодаря защитному экрану ультрафиолетовые лучи не выходят за пределы прибора. Лампы подлежат замене через 8000 - 9000 часов.

Облучатели ОТКРЫТОГО типа отличаются отсутствием вентиляторов и отсутствием защитного экрана в корпусе. Действие основано на прямом облучении всего объёма воздуха в помещении в отсутствие людей. Применять такие приборы в детских учреждениях не желательно.

Плюсы бактерицидных рециркуляторов

  • Давно используются в медицинских учреждениях. Имеются сертификаты "Росздравнадзора" на все приборы
  • Высокий уровень доверия потребителей.
  • Простые в обслуживании.
  • Высокие показатели очистки воздуха от вирусов и бактерий
  • Ультрафиолетовые лучи способны обезвредить некоторые токсичные химические вещества.
  • При облучении воздуха происходит восстановление ионного баланса.

Минусы бактерицидных рециркуляторов

  • Необходимо менять лампы через 8000-9000 часов. (1 год непрерывной работы)
  • Не удаляют из воздуха пыль, аэрозоли, споры плесени и некоторых бактерий.
  • Низкая эффективность в очистке воздуха от токсичных химических соединений.

Бактерицидные рециркуляторы разных производителей практически не имеют существенных отличий. Все используют стандартные лампы на 15 и 30 ватт и серийно выпускаемые вентиляторы для системных блоков. Основные отличия приборов разных торговых марок - цена и дизайн корпуса.

Фотокаталитические очистители воздуха.

Фотокаталитический очиститель это относительно новый вид приборов используемых для очистки и дезинфекции воздуха в медицинских учреждениях, в промышленности и в быту. Принцип работы - окисление и разрушение микроорганизмов и токсичных химических соединений на катализаторе под действием ультрафиолетовых лучей. Имеют более широкий спектр действия чем УФ-рециркуляторы. Очистка производится в присутствие людей. Все фотокаталитические очистители имеют пылевые фильтры.

Плюсы фотокаталитических очистителей воздуха.

  • Используются в медицинских учреждениях. Некоторые приборы имеют сертификаты "Росздравнадзора".
  • Высокие показатели очистки воздуха от вирусов, бактерий, спор плесени.
  • Очищают воздух от большинства токсичных химических соединений.
  • Очищают воздух от пыли и аэрозолей.
  • При очистке воздуха происходит восстановление ионного баланса

Минусы фотокаталитических очистителей воздуха.

  • Необходимо менять пылевые фильтры раз в 4 - 12 месяцев. (зависит от модели)

Распыление дезинфицирующих растворов в присутствии людей - сравнительно новый способ борьбы с инфекциями передающимися воздушно-капельным путём. Технология простая и эффективная. Вода содержащая активные компоненты распыляется с помощью ультразвукового увлажнителя. В качестве дезинфектора используют ионы серебра или растворённый в воде озон. На сегодняшний день Росздравнадзор допустил к использованию в медицинских учреждениях только приборы использующие ионы серебра (увлажнители "Акваком") Эффективность этого оборудования подтверждена многочисленными клиническими исследованиями.

Главное достоинство этих технологий в том, что обработка производится одновременно во всём объёме помещения.

Вторым значительным преимуществом является то, что эти приборы способны поддерживать в комнате требуемую влажность.

К недостаткам можно отнести необходимость ежедневного обслуживания - добавление воды.

Чем отличаются медицинские приборы от бытовых?

  • Медицинские приборы имеют сертификаты подтверждающие их эффективность в отношении тестируемых видов бактерий и вирусов.
  • Медицинские приборы, как правило, имеют более низкую производительность чем бытовые при одинаковой цене.
  • Бытовые приборы имеют больше ступеней очистки.
  • Бытовые приборы имеют более современный и качественный дизаин и более современную систему управления.
  • И бытовые приборы и медицинские безопасны для использования в присутствии детей.

Как подобрать прибор под конкретное помещение?

  • Воздухоочиститель может эффективно очищать воздух только в той комнате, где он установлен.
  • Производительность прибора должна соответствовать объёму комнаты. Производители медицинской техники рекомендуют однократное прохождение всего объём воздуха комнаты через рециркулятор за один час. Но в детских садах плотность населения очень большая. Больше чем в больницах в несколько раз. Поэтому стоит увеличить кратность оборота воздуха. Чем больше воздуха будет проходить через прибор, тем ниже будет концентрация в воздухе патогенных микроорганизмов. По разным оценкам оптимальная кратность оборота воздуха через прибор от 1 до 3. Т.е. весь объём воздуха должен проходить через прибор от одного до трёх раз в час. Например. Объём игровой комнаты 100 кубических метров. Нужен прибор с производительностью от 100 до 300 м3 в час.
  • Два прибора с производительностью 50 м3/ч. расположенных в разных местах комнаты лучше чем один на 100 м3/ч.

Передвижной или стационарный.

  • Это может быть опасно, т.к. прибор находится в зоне досягаемости для детей. Дети могут попробовать им играть. Прибор не очень устойчив, а внутри большинства рециркуляторов установлены ртутные лампы.
  • По опыту мы знаем, что передвижной прибор фактически не передвигается в процессе эксплуатации. При покупке многие рассчитывают, что персонал будет его передвигать из комнаты в комнату вслед за детьми, но этого не происходит. Прибор стоит в одном углу, и не всегда включен, т.к. его забывают включить после перемещения.
  • Передвижной прибор занимает много места.
  • Передвижной прибор дороже стационарного. Часто за те же деньги можно купить два стационарных.
  • Прибор дезинфекции воздуха НЕ обладает мгновенным действием. Ему нужно время чтобы очистить воздух. Лучше чтобы прибор работал постоянно.
  • Как показывает опыт, наиболее эффективно работают приборы дезинфекции, которые никто не двигает и не трогает, т.е. по принципу "Включил и забыл".

Как часто нужно включать прибор дезинфекции воздуха?

Воздухоочиститель должен работать непрерывно в присутствии людей. Люди дышат непрерывно и вместе с воздухом выдыхают вирусы и бактерии.

Лучшим вариантом будет установка прибора с недельным таймером. Прибор сам будет включаться утром и отключаться вечером пропуская выходные. И подходить к такому прибору нужно будет только для замены ламп или фильтров.

К сожалению большая часть медицинских приборов не имеет суточных или недельных таймеров, и лишь немногие могут работать от внешнего таймера. Такие приборы лучше не выключать, иначе его забудут включить.

Если вы не нашли интересующий вас вопрос на нашем сайте отправьте его нам по электронной почте.

Здоровый воздух в квартире — залог здоровья людей

Фотокаталитические установки

Самые современные установки для дезинфекции воздуха работают по принципу фотокатализа. Такое оборудование для дезинфекции помещений также весьма эффективно в плане очищения воздуха от микроорганизмов. Но в отличие от бактерицидных ламп, они прекрасно борются и с летучими соединениями. Фокалитические приборы обеспечивают обеззараживание воздуха в любом помещении, они абсолютно безопасны, и их можно использовать в помещениях с людьми так же, как и в пустых. Принципиально их действие состоит в окислении различных летучих соединений. Процесс происходит на поверхности фотокатализатора, в условиях комнатной температуры. Такие обеззараживатели воздуха воздействуют очень мягко, полученные окислы на фильтрах не осаждаются и разрушаются до безопасных компонентов. С помощью этих установок инактивируются:

  • Болезнетворные микроорганизмы;
  • Выхлопные газы;
  • Угарный газ;
  • Аммиак;
  • Сероводород;
  • Фенолы и прочие летучие токсические вещества.

С помощью этих приборов удается эффективно нейтрализовать неприятные запахи, дым, аллергены и токсичные соединения. Фотокаталитические установки прошли все необходимые испытания и имеют всю необходимую разрешительную документацию. Их используют во многих общественных местах, в офисах, административных зданиях, учебных заведениях, в том числе школах, подобные бактерицидные установки для обеззараживания воздуха всё чаще устанавливаются в медучреждениях.

При покупке такого прибора следует помнить, что он должен быть внесен в госреестр медицинской техники и иметь свидетельство об этом.

Бытовые обеззараживатели также есть на рынке, но ввиду их малых размеров имеют довольно сомнительную эффективность, то есть дезинфекция квартиры с их помощью, скорее всего, будет неполной.

Заводские обеззараживатели воздуха для помещений TIOKRAFT

Рассматривать фотокаталитические виды стерилизаторов воздуха для помещений можно начинать с заводских приборов TIOKRAFT. Эти промышленные установки изготавливаются в виде стационарных шкафов. Разработаны они были специально для больших помещений с целью очистки воздуха в них от взвешенной пыли, частиц аэрозолей, различных органических загрязнителей, в первую очередь – от табачного дыма, а также для эффективной очистки от болезнетворной микрофлоры. При этом дезинфекция воздуха от вирусов и бактерий, а также инактивация органических загрязнителей в виде молекулярных взвесей не приводит к накоплению их в самом приборе.

Подобные обеззараживатели воздуха очень эффективны, если использовать их в местах, где отмечается интенсивное выделение летучих органических соединений, которые не фильтруются обычными угольными, то есть адсорбционными, фильтрами. Такие обеззараживатели воздуха для дома и общественных помещений ликвидируют загрязнения с самой маленькой молекулярной массой. В первую очередь установка таких приборов рекомендуется в медицинских учреждениях, больших жилых помещениях и административных зданиях.

Бактерицидные лампы

Прекрасно обеззараживают воздух, уничтожая микроорганизмы, взвешенные в нём. Губительным является излучение с длиной волн 254 - 265 нанометров, такой спектр убивает более 90% микроорганизмов. С их помощью можно практически стерилизовать, то есть полностью обеззаразить воздушный массив. Такие лампы можно приобретать вместе с установкой, а можно отдельно, они бывают разной длины. Внутри подобных ламп находятся пары ртути, которые представляют для человека опасность в случае, если лампа будет разбита. Бактерицидные лампы с ультрафиолетовым излучением очень эффективны против вирусов, поэтому стабильно пользуются спросом. Чтобы правильно выбрать подходящий уф обеззараживатель, нужно ответить на некоторые вопросы:

  • Вам нужна круглосуточная работа лампы или периодическая?
  • Каков объем помещения?
  • Где будет монтироваться лампа: на потолок, на стенку, на пол?

Итак, ультрафиолетовые излучатели генерируют ультрафиолет с длиной волны от 253,7 нм. Все бактерицидные ультрафиолетовые облучатели делятся на 2 категории: открытого и закрытого типа. Последние называются рециркуляторами. Особенность подобных обеззараживателей в том, что они воздействуют в пространстве, куда попадает свет от лампы. Таким образом, дезинфекции подвергается не только воздух, но и все доступные для облучения поверхности. Из рециркуляторов ультрафиолетовое излучение наружу не попадает. Обработка воздуха происходит внутри корпуса, после чего обеззараженный воздух выходит в помещение. Такие приборы снабжены вентиляторами и их можно устанавливать и включать в помещениях с людьми.

Воздействуют ультрафиолетовые лучи в основном на нуклеиновые кислоты, разрушая ДНК микроорганизмов. То есть, патогенные микроорганизмы погибают в первом и в следующем поколениях. Следует иметь в виду, что стекло препятствует прохождению ультрафиолетовых лучей, защищает от них. Еще одним недостатком ультрафиолетового излучения для дезинфекции является его недостаточное проникновение из-за эффекта экранирования, если воздух перенасыщен пылью. То есть, обеззараживание воздуха в аптеке, например, будет намного эффективней, чем в производственном цехе.

Кроме того, из-за особенностей разрушительного действия ультрафиолета некоторая часть микробов выживает, и постепенно формируются поколения, устойчивые к ультрафиолету. Эти механизмы защиты микробов получили название фотореактивации. Положение усугубляется еще и тем, что ультрафиолетовые облучатели не имеют фильтров.

Открытые обеззараживатели воздуха нельзя применять в присутствии людей, потому что ультрафиолет способен вызвать ожоги I-II степени на сетчатке глаз. Также он может обострить сердечно-сосудистые проблемы, и даже привести к онкологии. Поэтому в помещениях с людьми допускается эксплуатация только рециркуляторов, то есть закрытых уф-установок.

Во время эпидемий важно не допустить заражения здоровых людей и ускорить выздоровление больных, и для этого есть отличные приборы — обеззараживатели воздуха. Какими они бывают, какие у них недостатки и достоинства, где и как их целесообразно применять.

Экологическая обстановка становится всё хуже, ситуация с каждым годом лишь усугубляется. Появляются новые промышленные выбросы, образуются новые штаммы патогенных микроорганизмов, свою роль играют негативные климатические изменения, одновременно в обиходе появляются такие слова, как обеззараживатель воздуха. Действительно, проблема очистки и обеззараживания воздуха, особенно в больших городах, становится все более актуальной. Рассмотрим основные приборы для этих целей, которые существуют на рынке. Они делятся на две большие группы: ультрафиолетовые уф обеззараживатели на бактерицидных лампах и фотокаталитические установки.

УФ-облучатели в общественном транспорте

Обеззараживатели в общественном транспорте способны бороться с эпидемиями! Для проверки прибора в действии бактерицидный рециркулятор — обеззараживатель воздуха установили в одной маршрутке г.Уфа. Водитель одного из автобусов города ездил с ним полгода. Этот водитель засвидетельствовал, что в течение этого времени он ни разу ничем не заболел, несмотря на то, что перевез огромное количество пассажиров, в том числе в периоды эпидемии ОРЗ. Сами же пассажиры отмечали при опросе, что воздух в маршрутке действительно заметно отличается чистотой. В обычных салонах встречаются самые разные запахи, в данной же маршрутке не ощущалось абсолютно никаких посторонних запахов, воздух был чистым и свежим.

Разработчики прибора уверены, что уф обеззараживатели воздуха должны быть установлены во всех городских автобусах и вообще во всем общественном транспорте. Особенно это важно, когда заболеваемость вирусными респираторными инфекциями наиболее высока. Ведь каждый житель современного большого города в общественном транспорте проводит в среднем от 30 минут до 2 часов ежедневно. Были проведены специальные выездные исследования, в ходе которых производился отбор проб воздуха. И замеры бактериальной обсемененности экспериментально доказали, что в салонах, где были установлены уф обеззараживатели воздуха, уровень бактериальной загрязненности был меньше в 5 раз.

Прибор-рециркулятор работает фактически так же, как любая другая бактерицидная ультрафиолетовая лампа, то есть он просто убивает ультрафиолетом все микроорганизмы, которые витают в воздухе. Стоит один такой дезинфицирующий стерилизатор воздуха примерно 5000 руб. для большого автобуса нужно 3 таких прибора, а для обычного легкового автомобиля или маршрутки типа ГАЗели вполне достаточно установить один обеззараживатель воздуха на весь салон.

Очень важно, что больших затрат энергии для работы приборов и стерилизация воздуха в салоне транспортного средства не требуется, для этого вполне достаточно стандартных автомобильных 12 вольт. Средняя длительность работы бактерицидной лампы, которая установлена внутри прибора, достигает 9000 час. Без перерыва каждый рециркулятор способен работать до 2-х часов, а обслуживать его в маршрутке совсем не сложно. Это может делать любой штатный электрик.

Чтобы собрать такой прибор, не нужно ни много времени, ни особенных запчастей. Он полностью может собираться из отечественных деталей. Данный прибор после совсем непродолжительного инструктажа может легко собрать даже неграмотная домохозяйка. Сборка производится в течение получаса, не более. Никакие особые инструменты для этого также не нужны.

Дезинфекция квартиры

Как же при всех этих недостатках перечисленных приборов проводится дезинфекция квартиры, если в ней уже находится инфицированный человек, или просто для профилактики в период эпидемии ОРЗ? Ведь просто изоляция больных людей обычно малоэффективна, а очень важно предотвратить заражение остальных членов семьи. Есть 7 самый эффективных способов правильной дезинфекции квартиры:

  1. Первый способ – химический. Предполагает ежедневную влажную уборку с мытьем растворами монохлорамина либо хлорной извести. Протирать таким раствором нужно все горизонтальные поверхности. В качестве дезинфицирующей жидкости можно использовать бытовую химию, например, хлорные отбеливатели Белизна, Блеск, Дезактив, Санита и т.д.
  2. Второй способ – бытовые подручные средства. В качестве дезинфицирующего вещества можно использовать насыщенный раствор кухонной соли, уксус, перекись водорода и т.д.
  3. Третий способ – распыление эфирных масел (аромалампами и другими способами). Лучшими считаются эфиры хвойных, эвкалипта, чайного дерева, цитрусовых, особенно лимона. Прекрасно себя зарекомендовала такая дезинфекция воздуха в любом помещении, и в жилом, и в рабочем.
  4. Четвертый способ – периодическое включение открытой ультрафиолетовой лампы. С учетом всех ограничений, которые были описаны выше. Именно таким способом обеззараживается операционная и аптечный автоклав, например. Включать лампу нужно ежедневно на 15-20 минут в отсутствие людей и животных, после обработки обязательно проветрить помещение.
  5. Пятый способ – использование рециркулятора. Он эффективен в помещениях до 50 кв.м., хотя есть и менее мощные приборы для маленьких отдельных комнат.
  6. Шестой способ — солевая лампа. Эффективна в маленьких помещениях площадью до 10 кв.м. и позволяет не только избавиться от микроорганизмов, но и насытить воздух полезными микроэлементами морской соли.
  7. Седьмой способ – увлажнитель и одновременно стерилизатор воздуха в квартире. Он обеззараживает и одновременно приводит в норму влажность воздуха. Таким образом предотвращает пересушивание слизистых оболочек и усиливает естественный иммунитет.

Если вы решили сочетать несколько методов дезинфекции, то не забывайте про собственную защиту. Используйте перчатки и респиратор. Во время обработки отправляйте домочадцев погулять на улицу. Шторы и мягкие игрушки нужно перестирать, гобелены и мягкую мебель – обработать распылителями. Если в квартире находится инфицированный человек, помещение с ним нужно проветривать каждые 4 часа. Для профилактики накопления токсинов генеральные уборки с применением дезинфицирующих средств нужно проводить каждые 3-4 месяца. Боритесь и поборете!

II степени на сетчатке глаз. Также он может обострить сердечно-сосудистые проблемы, и даже привести к онкологии. Поэтому в помещениях с людьми допускается эксплуатация только рециркуляторов, т.е. закрытых уф-установок.



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные