Постройте график кусочно заданной функции. Кусочные функции

Графики кусочно – заданных функций

Мурзалиева Т.А. учитель математики МБОУ «Борская средняя общеобразовательная школа» Бокситогорский район Ленинградская область


Цель:

  • освоить метод линейного сплайна для построения графиков, содержащих модуль;
  • научиться применять его в простых ситуациях.

Под сплайном (от англ. spline - планка, рейка) обычно понимают кусочно-заданную функцию.

Такие функции были известны математикам давно, начиная еще с Эйлера (1707-1783г.,швейцарский, немецкий и российский математик), но их интенсивное изучение началось, фактически, только в середине XX века.

В 1946 году Исаак Шёнберг (1903- 1990г., румынский и американский математик) впервые употребил этот термин. С 1960 года с развитием вычислительной техники началось использование сплайнов в компьютерной графике и моделировании.


1 . Введение

2. Определение линейного сплайна

3. Определение модуля

4. Построение графиков

5. Практическая работа



Одно из основных назначений функций – описание реальных процессов, происходящих в природе.

Но издавна ученые – философы и естествоиспытатели выделяли два типа протекания процессов: постепенное ( непрерывное ) и скачкообразное.


При падении тела на землю сначала происходит непрерывное нарастание скорости движения , а в момент столкновения с поверхностью земли скорость изменяется скачкообразно , становясь равной нулю или меняя направление (знак) при «отскоке» тела от земли (например, если тело – мяч).

Но раз есть разрывные процессы, то необходимы средства их описаний. С этой целью вводятся в действие функции, имеющие разрывы .


a - формулой y = h(x), причем будем считать, что каждая из функций g(x) и h(x) определена для всех значений х и разрывов не имеет. Тогда, если g(a) = h(a), то функция f(x) имеет при х=а скачок; если же g(a) = h(a) = f(a), то «комбинированная» функция f разрывов не имеет. Если обе функции g и h элементарные, то f называется кусочно–элементарной. " width="640"
  • Один из способов введения таких разрывов следующий:

Пусть функция y = f(x)

при x определена формулой y = g(x),

а при xa - формулой y = h(x), причем будем считать , что каждая из функций g(x) и h(x) определена для всех значений х и разрывов не имеет.

Тогда , если g(a) = h(a), то функция f(x) имеет при х=а скачок;

если же g(a) = h(a) = f(a), то «комбинированная» функция f разрывов не имеет. Если обе функции g и h элементарные, то f называется кусочно–элементарной.



Графики непрерывных функций


Построить график функции:

У = |X-1| + 1

Х=1 –точка смены формул


Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера».

Модулем числа а называется расстояние (в единичных отрезках ) от начала координат до точки А (а) .

Это определение раскрывает геометрический смысл модуля.

Модулем (абсолютной величиной ) действительного числа а называется то самое число а ≥ 0, и противоположное число –а , если а


0 или х=0 у = -3х -2 при х " width="640"

Построить график функции у = 3|х|-2.

По определению модуля, имеем: 3х – 2 при х0 или х=0

-3х -2 при х


x n) " width="640"

. Пусть заданы х 1 х 2 х n – точки смены формул в кусочно-элементарных функциях.

Функция f, определенная при всех х, называется кусочно-линейной, если она линейна на каждом интервале

и к тому же выполнены условия согласования, то есть в точках смены формул функция не терпит разрыв.

Непрерывная кусочно-линейная функция называется линейным сплайном . Её график есть ломаная с двумя бесконечными крайними звеньями – левым (отвечающим значениям x n ) и правым ( отвечающим значениям x x n )


Кусочно-элементарная функция может быть определена более чем двумя формулами

График – ломаная с двумя бесконечными крайними звеньями – левым (х1).

У=|x| - |x – 1|

Точки смены формул: х=0 и х=1.

У(0)=-1, у(1)=1.


График кусочно-линейной функции удобно строить, указывая на координатной плоскости вершины ломаной.

Кроме построения n вершин следует построить также две точки : одну левее вершины A 1 ( x 1; y ( x 1)), другую – правее вершины An ( xn ; y ( xn )).

Заметим, что разрывную кусочно-линейную функцию нельзя представить в виде линейной комбинации модулей двучленов .


Построить график функции у = х+ |x -2| - |X|.

Непрерывная кусочно-линейная функция называется линейным сплайном

1.Точки смены формул: Х-2=0, Х=2 ; Х=0

2.Составим таблицу:

У(0 )= 0+|0-2|-|0|=0+2-0= 2 ;

у(2 )=2+|2-2|-|2|=2+0-2= 0 ;

у (-1 )= -1+|-1-2| - |-1|= -1+3-1= 1 ;

у(3 )=3+|3-2| - |3|=3+1-3= 1 .


Построить график функции у = |х+1| +|х| – |х -2|.

1 .Точки смены формул:

х+1=0, х=-1 ;

х=0 ; х-2=0, х=2.

2 . Составим таблицу:

y(-2)=|-2+1|+|-2|-|-2-2|=1+2-4=-1;

y(-1)=|-1+1|+|-1|-|-1-2|=0+1-3=-2;

y(0)=1+0-2=-1;

y(2)=|2+1|+|2|-|2-2|=3+2-0=5;

y(3)=|3+1|+|3|-|3-2|=4+3-1=6.


|x – 1| = |x + 3|

Решите уравнение:

Решение. Рассмотрим функцию y = |x -1| - |x +3|

Построим график функции /методом линейного сплайна/

  • Точки смены формул:

х -1 = 0, х = 1; х + 3 =0, х = - 3.

2. Составим таблицу:

y(- 4) =|- 4–1| - |- 4+3| =|- 5| - | -1| = 5-1=4;

y( -3 )=|- 3-1| - |-3+3|=|-4| = 4;

y( 1 )=|1-1| - |1+3| = - 4 ;

y(-1) = 0.

y(2)=|2-1| - |2+3|=1 – 5 = - 4.

Ответ: -1.



1. Построить графики кусочно-линейных функций методом линейного сплайна:

у = |x – 3| + |x|;

1). Точки смены формул:

2). Составим таблицу:


2. Построить графики функций, используя УМК «Живая математика »

А) у = |2x – 4| + |x +1|

1) Точки смены формул:

2) y() =

Б) Постройте графики функций, установите закономерность :

a) у = |х – 4| б) y = |x| +1

y = |x + 3| y = |x| - 3

y = |x – 3| y = |x| - 5

y = |x + 4| y = |x| + 4

Используйте инструменты «Точка», «Отрезок», «Стрелка» на панели инструментов.

1. Меню «Графики».

2. Вкладка «Построить график».

.3. В окне «Калькулятор» задать формулу.


Постройте график функции:

1) У = 2х + 4


1. Козина М.Е. Математика. 8-9 классы: сборник элективных курсов. – Волгоград: Учитель, 2006.

2. Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова. Алгебра: учеб. Для 7 кл. общеобразоват. учреждений/ под ред. С. А. Теляковского. – 17-е изд. – М. : Просвещение, 2011

3. Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова. Алгебра: учеб. Для 8 кл. общеобразоват. учреждений/ под ред. С. А. Теляковского. – 17-е изд. – М. : Просвещение, 2011

4. ВикипедиЯ свободная энциклопедия

http://ru.wikipedia.org/wiki/Spline

Аналитическое задание функции

Функция %%y = f(x), x \in X%% задана явным аналитическим способом , если дана формула, указывающая последовательность математических действий, которые надо выполнить с аргументом %%x%%, чтобы получить значение %%f(x)%% этой функции.

Пример

  • %% y = 2 x^2 + 3x + 5, x \in \mathbb{R}%%;
  • %% y = \frac{1}{x - 5}, x \neq 5%%;
  • %% y = \sqrt{x}, x \geq 0%%.

Так, например, в физике при равноускоренном прямолинейном движении скорость тела определяется формулой %%v = v_0 + a t%%, а формула для перемещения %%s%% тела при равномерно ускоренном движении на промежутке времени от %%0%% до %%t%% записывается в виде: %% s = s_0 + v_0 t + \frac{a t^2}{2} %%.

Кусочно-заданные функции

Иногда рассматриваемая функция может быть задана несколькими формулами, действующими на различных участках области ее определения, в которой изменяется аргумент функции. Например: $$ y = \begin{cases} x ^ 2,~ если~x < 0, \\ \sqrt{x},~ если~x \geq 0. \end{cases} $$

Функции такого вида иногда называют составными или кусочно-заданными . Примером такой функции является %%y = |x|%%

Область определения функции

Если функция задана явным аналитическим способом с помощью формулы, но область определения функции в виде множества %%D%% не указана, то под %%D%% будем всегда подразумевать множество значений аргумента %%x%%, при которых данная формула имеет смысл. Так для функции %%y = x^2%% областью определения служит множество %%D = \mathbb{R} = (-\infty, +\infty)%%, поскольку аргумент %%x%% может принимать любые значения на числовой прямой . А для функции %%y = \frac{1}{\sqrt{1 - x^2}}%% областью определения будет множество значений %%x%% удовлетворяющих неравенству %%1 - x^2 > 0%%, т.е. %%D = (-1, 1)%%.

Преимущества явного аналитического задания функции

Отметим, что явный аналитический способ задания функции достаточно компактен (формула, как правило, занимает немного места), легко воспроизводим (формулу нетрудно записать) и наиболее приспособлен к выполнению над функциями математических действий и преобразований.

Некоторые из этих действий - алгебраические (сложение, умножение и др.) - хорошо известны из школьного курса математики, другие (дифференцирование, интегрирование) будем изучать в дальнейшем. Однако этот способ не всегда нагляден, так как не всегда четок характер зависимости функции от аргумента, а для нахождения значений функции (если они необходимы) требуются иногда громоздкие вычисления.

Неявное задание функции

Функция %%y = f(x)%% задана неявным аналитическим способом , если дано соотношение $$F(x,y) = 0, ~~~~~~~~~~(1)$$ связывающее значения функции %%y%% и аргумента %%x%%. Если задавать значения аргумента, то для нахождения значения %%y%%, соответствующего конкретному значению %%x%%, необходимо решить уравнение %%(1)%% относительно %%y%% при этом конкретном значении %%x%%.

При заданном значении %%x%% уравнение %%(1)%% может не иметь решения или иметь более одного решения. В первом случае заданное значение %%x%% не принадлежит области определения неявно заданной функции, а во втором случае задает многозначную функцию , имеющую при данном значении аргумента более одного значения.

Отметим, что если уравнение %%(1)%% удается явно разрешить относительно %%y = f(x)%%, то получаем ту же функцию, но уже заданную явным аналитическим способом. Так, уравнение %%x + y^5 - 1 = 0%%

и равенство %%y = \sqrt{1 - x}%% определяют одну и ту же функцию.

Параметрическое задание функции

Когда зависимость %%y%% от %%x%% не задана непосредственно, а вместо этого даны зависимости обоих переменных %%x%% и %%y%% от некоторой третьей вспомогательной переменной %%t%% в виде

$$ \begin{cases} x = \varphi(t),\\ y = \psi(t), \end{cases} ~~~t \in T \subseteq \mathbb{R}, ~~~~~~~~~~(2) $$то говорят о параметрическом способе задания функции;

тогда вспомогательную переменную %%t%% называют параметром.

Если из уравнений %%(2)%% удается исключить параметр %%t%%, то приходят к функции, заданной явной или неявной аналитической зависимостью %%y%% от %%x%%. Например, из соотношений $$ \begin{cases} x = 2 t + 5, \\ y = 4 t + 12, \end{cases}, ~~~t \in \mathbb{R}, $$ исключением параметра %%t%% получим зависимость %%y = 2 x + 2%%, которая задает в плоскости %%xOy%% прямую.

Графический способ

Пример графического задания функции

Приведенные выше примеры показывают, что аналитическому способу задания функции соответствует ее графическое изображение , которое можно рассматривать как удобную и наглядную форму описания функции. Иногда используют графический способ задания функции, когда зависимость %%y%% от %%x%% задают линией на плоскости %%xOy%%. Однако при всей наглядности он проигрывает в точности, поскольку значения аргумента и соответствующие им значения функции можно получить из графика лишь приближенно. Возникающая при этом погрешность зависит от масштаба и точности измерения абсциссы и ординаты отдельных точек графика. В дальнейшем графику функции отведем роль только иллюстрации поведения функции и поэтому будем ограничиваться построением «эскизов» графиков, отражающих основные особенности функций.

Табличный способ

Отметим табличный способ задания функции, когда некоторые значения аргумента и соответствующие им значения функции в определенном порядке размещаются в таблице. Так построены известные таблицы тригонометрических функций, таблицы логарифмов и т.п. В виде таблицы обычно представляют зависимость между величинами, измеряемыми при экспериментальных исследованиях, наблюдениях, испытаниях.

Недостаток этого способа состоит в невозможности непосредственного определения значений функции для значений аргумента, не входящих в таблицу. Если есть уверенность, что непредставленные в таблице значения аргумента принадлежат области определения рассматриваемой функции, то соответствующие им значения функции могут быть вычислены приближенно при помощи интерполяции и экстраполяции.

Пример

x 3 5.1 10 12.5
y 9 23 80 110

Алгоритмический и словесный способы задания функций

Функцию можно задать алгоритмическим (или программным ) способом, который широко используют при вычислениях на ЭВМ.

Наконец, можно отметить описательный (или словесный ) способ задания функции, когда правило соответствия значений функции значениям аргумента выражено словами.

Например, функцию %%[x] = m~\forall {x \in , постоянна (-∞; -5]; 4. ограниченность – ограничена снизу 5. наибольшее и наименьшее значение функции – у наим = 0, у наиб – не существует; 6. непрерывность- непрерывна на всей области определения; 7. область значений – , выпукла и вниз и вверх (-∞; -5] и [-2; +∞). VI. Воспроизведение знаний на новом уровне. Вы знаете, что построение и исследование графиков кусочно-заданных функций, рассматриваются во второй части экзамена по алгебре в разделе функции и оцениваются 4-мя и 6-ю баллами. Обратимся к сборнику заданий.Страница 119 - №4.19-1).Решение: 1).у = - x, - квадратичная функция, график – парабола, ветви вниз (а = -1, а 0). х -2 -1 0 1 2 у -4 -1 0 1 4 2) у= 3х – 10, - линейная функция, график – прямая Составим таблицу некоторых значений х 3 3 у 0 -1 3) у= -3х -10, - линейная функция, график – прямая Составим таблицу некоторых значений х -3 -3 у 0 -1 4)Построим графики функций в одной системе координат и выделим части графиков на заданных промежутках.
Найдем по графику, при каких значениях х значения функции неотрицательны. Ответ: f(x)  0 при х = 0 и при  3VII.Работа над нестандартными заданиями. №4.29-1), стр. 121. Решение: 1)Прямая (слева) у = kx + b проходит через точки (-4;0) и (-2;2). Значит,-4 k + b = 0,-2 k + b = 2;
k = 1, b = 4, у = х+4.Ответ: х +4, если х -2 у = , если -2 х £ 3 3, если х 3
VIII.Контроль знаний. Итак, подведём небольшой итог. Что мы повторили на уроке?План исследования функций, шаги построения графика кусочной функции, задание функции аналитически. Проверим как вы усвоили данный материал.Тестирование на «4»- «5», «3» I вариант№ У
2 1 -1 -1 1 Х

    D(f) = , выпуклая и вверх и вниз на , выпуклая вверх и вниз на , убывает на ________ Ограничена ____________ у наим не существует, у наиб =_____ Непрерывна на всей области определения Е(f) = ____________ Выпукла и вниз и вверх на всей области определения

Непрерывность и построение графиков кусочно-заданных функций – сложная тема. Учиться строить графики лучше непосредственно на практическом занятии. Здесь в основном показано исследование на непрерывность.

Известно, что элементарная функция (см. с. 16) непрерывна во всех точках, в которых определена. Поэтому нарушение непрерывности у элементарных функций возможно только в точках двух типов:

а) в точках, где функция «переопределяется»;

б) в точках, где функция не существует.

Соответственно только такие точки и проверяются при исследовании на непрерывность, что показано в примерах.

Для неэлементарных функций исследование сложнее. Например, функция (целая часть числа) определена на всей числовой оси, но терпит разрыв при каждом целомx . Подобные вопросы выходят за рамки пособия.

Перед изучением материала следует повторить по лекции или учебнику, какими (какого рода) бывают точки разрыва.

Исследование кусочно-заданных функций на непрерывность

Функция задана кусочно , если она на разных участках области определения задаётся разными формулами.

Основная идея при исследовании таких функций – выяснить, задана ли функция в тех точках, в которых переопределяется, и как. Затем проверяется, совпадают ли значения функции слева и справа от таких точек.

Пример 1. Покажем, что функция
непрерывна.

Функция
элементарна и потому непрерывна в тех точках, в которых определена. Но, очевидно, она определена во всех точках. Следовательно, во всех точках она и непрерывна, в том числе при
, как требует условие.

То же справедливо для функции
, и при
она непрерывна.

В таких случаях непрерывность может нарушаться только там, где функция переопределяется. В нашем примере это точка
. Проверим её, для чего найдём пределы слева и справа:

Пределы слева и справа совпадают. Остаётся узнать:

а) определена ли функция в самой точке
;

б) если да, то совпадает ли
со значениями пределов слева и справа.

По условию, если
, то
. Поэтому
.

Видим, что (все равны числу 2). Это означает, что в точке
функция непрерывна . Итак, функция непрерывна на всей оси, включая точку
.

Замечания к решению

а) При вычислениях не играло роли, подставляем мы в конкретную формулу число
или
. Обычно это важно, когда получается деление на бесконечно малую величину, поскольку влияет на знак бесконечности. Здесь же
и
отвечают только завыбор функции;

б) как правило, обозначения
и
равноправны, то же касается обозначений
и
(и справедливо для любой точки, а не только для
). Дальше для краткости применяются обозначения вида
;

в) когда пределы слева и справа равны, для проверки на непрерывность фактически остаётся посмотреть, будет ли одно из неравенств нестрогим . В примере таковым оказалось 2-е неравенство.

Пример 2. Исследуем на непрерывность функцию
.

По тем же причинам, что в примере 1, непрерывность может нарушаться только в точке
. Проверим:

Пределы слева и справа равны, но в самой точке
функция не определена (неравенства строгие). Это означает, что
– точкаустранимого разрыва .

«Устранимый разрыв» означает, что достаточно или сделать любое из неравенств нестрогим, или придумать для отдельной точки
функцию, значение которой при
равно –5, или просто указать, что
, чтобы вся функция
стала непрерывной.

Ответ: точка
– точка устранимого разрыва.

Замечание 1. В литературе устранимый разрыв обычно считается частным случаем разрыва 1-го рода, однако студентами чаще понимается как отдельный тип разрыва. Во избежание разночтений будем придерживаться 1-й точки зрения, а «неустранимый» разрыв 1-го рода оговаривать особо.

Пример 3. Проверим, непрерывна ли функция

В точке

Пределы слева и справа различны:
. Независимо от того, определена ли функция при
(да) и если да, то чему равна (равна 2), точка
точка неустранимого разрыва 1-го рода .

В точке
происходитконечный скачок (от 1 к 2).

Ответ: точка

Замечание 2. Вместо
и
обычно пишут
и
соответственно.

Возможен вопрос: чем отличаются функции

и
,

а также их графики? Правильный ответ:

а) 2-я функция не определена в точке
;

б) на графике 1-й функции точка
«закрашена», на графике 2-й – нет («выколотая точка»).

Точка
, где обрывается график
, не закрашена на обоих графиках.

Сложнее исследовать функции, по-разному определённые на трёх участках.

Пример 4. Непрерывна ли функция
?

Так же, как в примерах 1 – 3, каждая из функций
,
инепрерывна на всей числовой оси, в том числе – на участке, на котором задана. Разрыв возможен только в точке
или (и) в точке
, где функция переопределяется.

Задача распадается на 2 подзадачи: исследовать на непрерывность функции

и
,

причём точка
не представляет интереса для функции
, а точка
– для функции
.

1-й шаг. Проверяем точку
и функцию
(индекс не пишем):

Пределы совпадают. По условию,
(если пределы слева и справа равны, то фактически функция непрерывна, когда одно и из неравенств нестрогое). Итак, в точке
функция непрерывна.

2-й шаг. Проверяем точку
и функцию
:

Поскольку
, точка
– точка разрыва 1-го рода, и значение
(и то, есть ли оно вообще) уже не играет роли.

Ответ: функция непрерывна во всех точках, кроме точки
, где имеет место неустранимый разрыв 1-го рода – скачок от 6 к 4.

Пример 5. Найти точки разрыва функции
.

Действуем по той же схеме, что в примере 4.

1-й шаг. Проверяем точку
:

а)
, поскольку слева от
функция постоянна и равна 0;

б) (
– чётная функция).

Пределы совпадают, но при
функция по условию не определена, и получается, что
– точка устранимого разрыва.

2-й шаг. Проверяем точку
:

а)
;

б)
– значение функции не зависит от переменной.

Пределы различны: , точка
– точка неустранимого разрыва 1-го рода.

Ответ:
– точка устранимого разрыва,
– точка неустранимого разрыва 1-го рода, в остальных точках функция непрерывна.

Пример 6. Непрерывна ли функция
?

Функция
определена при
, поэтому условие
превращается в условие
.

С другой стороны, функция
определена при
, т.е. при
. Значит, условие
превращается в условие
.

Получается, что должно выполняться условие
, и область определения всей функции – отрезок
.

Сами по себе функции
и
элементарны и потому непрерывны во всех точках, в которых определены – в частности, и при
.

Остаётся проверить, что происходит в точке
:

а)
;

Поскольку
, смотрим, определена ли функция в точке
. Да, 1-е неравенство – нестрогое относительно
, и этого достаточно.

Ответ: функция определена на отрезке
и непрерывна на нём.

Более сложные случаи, когда одна из составляющих функций неэлементарна или не определена в какой-либо точке своего отрезка, выходят за рамки пособия.

НФ1. Постройте графики функций. Обратите внимание, определена ли функция в той точке, в которой переопределяется, и если да – каково значение функции (слово «если » в определении функции для краткости пропущено):

1) а)
б)
в)
г)

2) а)
б)
в)
г)

3) а)
б)
в)
г)

4) а)
б)
в)
г)

Пример 7. Пусть
. Тогда на участке
строим горизонтальную прямую
, а на участке
строим горизонтальную прямую
. При этом точка с координатами
«выколота», а точка
«закрашена». В точке
получается разрыв 1-го рода («скачок»), и
.

НФ2. Исследуйтена непрерывность функции, по-разному определённые на 3-х интервалах. Постройте графики:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

Пример 8. Пусть
. На участке
строим прямую
, для чего находим
и
. Соединяем точки
и
отрезком. Сами точки не включаем, поскольку при
и
функция по условию не определена.

На участке
и
обводим осьOX (на ней
), однако точки
и
«выколоты». В точке
получаем устранимый разрыв, а в точке
– разрыв 1-го рода («скачок»).

НФ3. Постройте графики функций и убедитесь в их непрерывности:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

НФ4. Убедитесь в непрерывности функций и постройте их графики:

1) а)
б)
в)

2 а)
б)
в)

3) а)
б)
в)

НФ5. Постройте графики функций. Обратите внимание на непрерывность:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)

5) а)
б)
в)

г)
д)
е)

НФ6. Постройте графики разрывных функций. Обратите внимание на значение функции в той точке, где функция переопределяется (и существует ли оно):

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)

5) а)
б)
в)

г)
д)
е)

НФ7. То же задание, что и в НФ6:

1) а)
б)
в)

г)
д)
е)

2) а)
б)
в)

г)
д)
е)

3) а)
б)
в)

г)
д)
е)

4) а)
б)
в)

г)
д)
е)



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные