Молекула АТФ в биологии: состав, функции и роль в организме. Атф и ее роль в обмене веществ Этапы синтеза атф


Схема 5

Превращение веществ и энергии в процессе диссимиляции включает в себя следующие этапы:

I этап - подготовительный: сложные органические вещества под действием пищеварительных ферментов распадаются на простые, при этом выделяется только тепловая энергия.
Белки ® аминокислоты

Жиры ® глицерин и жирные кислоты

Крахмал ® глюкоза

II этап - гликолиз (бескислородный): осуществляется в гиало­плазме, с мембранами не связан; в нем участвуют ферменты; расщеплению подвергается глюкоза:



III этап - кислородный: осуществляется в митохондриях, свя­зан с матриксом митохондрий и внутренней мембраной, в нем участвуют ферменты, расщеплению подвергается пировино­градная кислота

СО 2 (диоксид углерода) выделяется из митохондрий в окружаю­щую среду. Атом водорода включается в цепь реакций, конеч­ный результат которых - синтез АТФ. Эти реакций идут в та­кой последовательности:

1. Атом водорода Н,с помощью ферментов-переносчиков посту­пает во внутреннюю мембрану митохондрии, образующую кристы, где он окисляется:

2. Протон Н + (катион водорода) выносится переносчиками на наружную поверхность мембраны крист. Для протонов эта мем­брана, так же как и наружная мембрана митохондрии, непрони­цаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.

3. Электроны водорода переносятся на внутреннюю поверх­ность мембраны крист и тут же присоединяются к кислороду с помощью фермента оксидазы, образуя отрицательно заряжен­ный активный кислород (анион):

4. Катионы и анионы по обе стороны мембраны создают разноименно заряженное электрическое поле, и когда разность потен­циалов достигнет 200 мВ, начинает действовать протонный канал. Он возникает в молекулах ферментов АТФ-синтетаз, которые встроены во внутреннюю мембрану, образующую кристы.

5. Через протонный канал протоны Н + устремляются внутрь митохондрии, создавая высокий уровень энергии, большая часть которой идет на синтез АТФ из АДФ и Ф (), а сами протоны Н + взаимодействуют с активным кислородом, образуя во­ду и молекулярный О 2:



Таким образом, О 2 , поступающий в митохондрии в процессе ды­хания организма, необходим для присоединения протонов Н + . При его отсутствии весь процесс в митохондриях прекращается, так как электронно-транспортная цепь перестает функциониро­вать. Общая реакция III этапа:

В результате расщепления одной молекулы глюкозы образуются 38 молекул АТФ: на II этапе - 2 АТФ и на III этапе - 36 АТФ. Об­разовавшиеся молекулы АТФ выходят за пределы митохондрии и участвуют во всех процессах клетки, где необходима энергия. Расщепляясь, АТФ отдает энергию (одна фосфатная связь заключает 46 кДж) и в виде АДФ и Ф (фосфата) возвращается в митохондрии.

Расщепление органических веществ до более простых с выделением энергии и запасанием ее в АТФ - это энергетический обмен. Он включает три этапа - подготовительный, бескислородный и кислородный.

На подготовительном этапе энергия хоть и выделяется, но не запасается в АТФ, а рассеивается в виде тепла.

Бескислородный этап протекает в цитоплазме и приводит к расщеплению каждой молекулы глюкозы до двух молекул пировиноградной кислоты. При этом выделяется мало энергии, поэтому синтезируется только две молекулы АТФ.

Кислородный этап энергетического обмена протекает в митохондриях. Здесь пировиноградная кислота окисляется до углекислого газа и воды, выделяется много энергии и синтезируется около 36 молекул АТФ.

Биосинтез белка и синтез жиров относятся к пластическому обмену, когда из более простых соединений синтезируются более сложные. Такие процессы идут не с выделением энергии, а с ее потреблением. АТФ здесь играет роль поставщика энергии, распадаясь до АДФ и фосфорной кислоты.

В биологии аббревиатурой АТФ обозначают органическое вещество (мономер) аденозинтрифосфат (аденозинтрифосфорную кислоту). По химическому строению оно представляет собой нуклеозидтрифосфат.

В состав АТФ входят рибоза, аденин, три остатка фосфорной кислоты . Фосфаты последовательно связаны между собой. При этом два последних так называемой макроэргической связью, разрыв которой обеспечивает клетку большим количеством энергии.

Таким образом, АТФ выполняет в клетке энергетическую функцию .

Большая часть молекул АТФ образуется в митохондриях в реакциях клеточного дыхания. В клетках постоянно идет синтез и распад большого количество молекул аденозинтрифосфорной кислоты.

Отщепление фосфатных групп в основном происходит при участии фермента АТФ-азы и является реакцией гидролиза (присоединения воды):

АТФ + H2O = АДФ + H3PO4 + E,

где E - это выделяющаяся энергия, идущая на различные клеточные процессы (синтез других органических веществ, их транспорт, движение органоидов и клетки, терморегуляцию и др.).

По разным источникам количество выделяющейся энергии составляет от 30 до 60 кДж/моль.

АДФ - это аденозиндифосфат, который содержит уже два остатка фосфорной кислоты.

Чаще всего к нему потом снова присоединяется фосфат с образованием АТФ:

АДФ + H3PO4 = АТФ + H2O — E.

Эта реакция идет с поглощением энергии, накопление которой происходит в результате рада ферментативных реакций и процессов переноса ионов (в основном в матриксе и на внутренней мембране митохондрий). В конечном итоге энергия аккумулируется в присоединяемой к АДФ фосфатной группе.

Однако от АДФ может отщепиться еще один фосфат, связанный макроэргической связью, при это образуется АМФ (аденозинмонофосфата).

АМФ входит в состав РНК. Отсюда еще одна функция аденозинтрифосфорной кислоты – она служит источником сырья для синтеза ряда органических соединений.

Таким образом, особенности строения АТФ, функциональное использование только его в качестве источника энергии в метаболических процессах, дает возможность клеткам иметь единую и универсальную систему по приему химической энергии.

Связанная статья:Этапы энергетического обмена

Процесс фосфорилирования – реакция переноса фосфорильной группы от одного соединения к другому при участии фермента киназы. АТФ синтезируется путем окислительного и субстратного фосфорилирования.

Окислительное фосфорилирование – синтез АТФ путем присоединения к АДФ неорганического фосфата с использованием энергии, освободившейся при окислении биоорганических веществ.

АДФ + ~Ф → АТФ

Промежуточным продуктом углеводного метаболизма является фосфоенолпировиноградная кислота, которая передает АДФ фосфорильную группу с высокоэнергетической связью:

2.

Второй этап. После транспортировки мономеры (продукты распада биоорганических соединений) поступают в клетки, где подвергаются окислению.

В результате окисления топливных молекул (аминокислоты, глюкоза, жиры) образуется соединение ацетил-Ко-А. В течение данного этапа освобождается около 30% энергии пищевых веществ.

Третий этап – цикл Кребса – представляет собой замкнутую систему биохимических окислительно-восстановительных реакций. Цикл назван по имени английского биохимика Ханса Кребса, который постулировал и экспериментально подтвердил основные реакции аэробного окисления. За проведенные исследования Кребс получил Нобелевскую премию (1953).

Цикл имеет еще два названия:


II.


Данный процесс является реакцией дегидратации, катализируется ферментом аконитазой.

Данный процесс является реакцией гидратации, катализируется ферментом аконитазой.


IV.

Реакции 4 и 5 представляют собой окислительное декарбоксилирование, катализируются изоцитратдегидрогеназой, промежуточным продуктом реакций является оксалосукцинат.

Эта реакция также является реакцией окислительного декарбоксилирования, т.е. это вторая окислительно-восстановительная реакция:

α-Оксоглутарат + НАД + КоА Сукцинил-КоА + СО2 + НАДН



VII.

ГТФ + АДФ АТФ + ГДФ

X. Четвертая окислительно-восстановительная реакция:


Четыре реакции цикла являются окислительно-восстановительными, катализируются ферментами – дегидрогеназами, содержащими коферменты НАД, ФАД. Коферменты захватывают образующиеся Н+ и ē и передают их в дыхательную цепь (цепь биологического окисления). Элементы дыхательной цепи находятся на внутренней мембране митохондрий.

Дыхательная цепь – система окислительно-восстановительных реакций, в ходе которых происходит постепенный перенос Н+ и ē к О2, который поступает в организм в результате дыхания.

В дыхательной цепи происходит образование АТФ. Основные переносчики ē в цепи – железо- и медьсодержащие белки (цитохромы), кофермент Q (убихинон). В цепи находится 5 цитохромов (b1, с1, с, а, а3).

Простетической группой цитохромов b1, с1, с является железосодержащий гем. Механизм действия данных цитохромов состоит в том, что в их составе имеется атом железа с переменной валентностью, который может находиться как в окисленном, так и в восстановленном состоянии в результате переноса ē и Н+:

Цитохромы а и а3 образуют комплекс цитохромоксидазу, который является последним звеном дыхательной цепи.

Цитохромоксидаза содержит помимо железа медь с переменной валентностью. При транспортировке ē от цитохрома а3 к молекулярному О2 происходит процесс

Предыдущая9101112131415161718192021222324Следующая

ПОСМОТРЕТЬ ЕЩЕ:



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать.

Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший «Салат из свеклы с чесноком»

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст?

Восемь уникальных способов, которые помогут достичь долголетия

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека — Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков — Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) — В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Пути синтеза АТФ в организме

Процесс фосфорилирования – реакция переноса фосфорильной группы от одного соединения к другому при участии фермента киназы.

АТФ синтезируется путем окислительного и субстратного фосфорилирования. Окислительное фосфорилирование – синтез АТФ путем присоединения к АДФ неорганического фосфата с использованием энергии, освободившейся при окислении биоорганических веществ.

АДФ + ~Ф → АТФ

Субстратное фосфорилирование – непосредственная передача фосфорильной группы с макроэргической связью АДФ для синтеза АТФ.

Примеры субстратного фосфорилирования:

1. Промежуточным продуктом углеводного метаболизма является фосфоенолпировиноградная кислота, которая передает АДФ фосфорильную группу с высокоэнергетической связью:


Взаимодействие промежуточного продукта цикла Кребса – макроэргического сукцинил-Ко-А – с АДФ с образованием одной молекулы АТФ.

Рассмотрим три основных этапа освобождения энергии и синтеза АТФ в организме.

Первый этап (подготовительный) включает переваривание и всасывание.

На этом этапе освобождается 0,1% энергии пищевых соединений.

Второй этап. После транспортировки мономеры (продукты распада биоорганических соединений) поступают в клетки, где подвергаются окислению. В результате окисления топливных молекул (аминокислоты, глюкоза, жиры) образуется соединение ацетил-Ко-А. В течение данного этапа освобождается около 30% энергии пищевых веществ.

Третий этап – цикл Кребса – представляет собой замкнутую систему биохимических окислительно-восстановительных реакций.

Цикл назван по имени английского биохимика Ханса Кребса, который постулировал и экспериментально подтвердил основные реакции аэробного окисления. За проведенные исследования Кребс получил Нобелевскую премию (1953). Цикл имеет еще два названия:

— цикл трикарбоновых кислот, так как он включает реакции превращения трикарбоновых кислот (кислот, содержащих три карбоксильные группы);

— цикл лимонной кислоты, так как первой реакцией цикла является образование лимонной кислоты.

Цикл Кребса включает 10 реакций, четыре из которых окислительно-восстановительные.

В ходе реакций освобождается 70% энергии.

Чрезвычайно велика биологическая роль этого цикла, поскольку это общий конечный пункт окислительного распада всех основных пищевых продуктов.

Это главный механизм окисления в клетке, образно его называют метаболическим «котлом». В процессе окисления топливных молекул (углеводов, аминокислот, жирных кислот происходит обеспечение организма энергией в виде АТФ. Топливные молекулы вступают в цикл Кребса после превращения в ацетил-Ко-А.

Кроме того, цикл трикарбоновых кислот поставляет промежуточные продукты для процессов биосинтеза. Этот цикл происходит в матриксе митохондрий.

Рассмотрим реакции цикла Кребса:

Цикл начинается с конденсации четырехуглеродного компонента оксалоацетата и двухуглеродного компонента ацетил-Ко-А.

Реакция катализируется цитратсинтазой и представляет собой альдольную конденсацию с последующим гидролизом. Промежуточным продуктом является цитрил-Ко-А, который гидролизуется на цитрат и КоА:

Это первая окислительно-восстановительная реакция.

Реакция катализируется α-оксоглутаратдегидрогеназным комплексом, состоящим из трех ферментов:

В сукциниле имеется связь, богатая энергией.

Расщепление тиоэфирной связи сукцинил-КоА сопряжено с фосфорилированием гуанозиндифосфата (ГДФ):

Сукцинил-КоА + ~ Ф +ГДФ Сукцинат + ГТФ +КоА

Фосфорильная группа ГТФ легко переносится на АДФ с образованием АТФ:

ГТФ + АДФ АТФ + ГДФ

Это единственная реакция цикла, являющаяся реакцией субстратного фосфорилирования.

Это третья окислительно-восстановительная реакция:

В цикле Кребса образуются углекислый газ, протоны, электроны.

Четыре реакции цикла являются окислительно-восстановительными, катализируются ферментами – дегидрогеназами, содержащими коферменты НАД, ФАД. Коферменты захватывают образующиеся Н+ и ē и передают их в дыхательную цепь (цепь биологического окисления).

Элементы дыхательной цепи находятся на внутренней мембране митохондрий.

Дыхательная цепь – система окислительно-восстановительных реакций, в ходе которых происходит постепенный перенос Н+ и ē к О2, который поступает в организм в результате дыхания. В дыхательной цепи происходит образование АТФ.

Основные переносчики ē в цепи – железо- и медьсодержащие белки (цитохромы), кофермент Q (убихинон). В цепи находится 5 цитохромов (b1, с1, с, а, а3).

Простетической группой цитохромов b1, с1, с является железосодержащий гем.

Механизм действия данных цитохромов состоит в том, что в их составе имеется атом железа с переменной валентностью, который может находиться как в окисленном, так и в восстановленном состоянии в результате переноса ē и Н+:

Итоговая реакция, которая происходит на цитохромоксидазе, имеет вид

Энергетический баланс цикла Кребса и дыхательной цепи – 24 молекулы АТФ.

Схема цикла Кребса

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфорной кислоты (АТФ) .

АТФ относят к мононуклеотидам. Она состоит из аденина, рибозы и трех остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями.

В этих связях запасена энергия, которая высвобождается при их разрыве:

АТФ + H2O → АДФ + H3PO4 + Q1,
АДФ + H2O → АМФ + H3PO4 + Q2,
АМФ + H2O → аденин + рибоза + H3PO4 + Q3,

где АТФ - аденозинтрифосфорная кислота; АДФ - аценозиндифосфорная кислота; АМФ - аденозинмонофосфорная кислота; Q1 = Q2 = 30,6 кДж; Q3 = 13,8 кДж.

Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования - присоединения остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ).

Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).

Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза).

Молекула АТФ служит универсальным хранителем и переносчиком энергии для всех живых существ.

Анатомия и физиология центральной нервной системы

4. Обмен жиров, их биологическая роль, теплоемкость, участие в обмене веществ.

Энергетическая стоимость жиров. Жировые отложения

Жиры — органические соединения, входящие в состав животных и растительных тканей и состоящие в основном из триглицеридов (сложных эфиров глицерина и различных жирных кислот). Помимо триглицеридов, в состав жиров входят вещества…

Влияние органических удобрений на микробиоту почвы

2.

Роль микроорганизмов в круговороте веществ в природе

Химическая деятельность микроорганизмов проявляется в непрерывном круговороте азота, фосфора, серы, углерода и других веществ. При самом активном, широком участии микроорганизмов в природе, главным образом в почве и гидросфере…

Гормон окситоцин

1.

Химическая структура и синтез окситоцина

Окситоцин не является собственным гормоном нейрогипофиза, а лишь накапливается в нем, перемещаясь по аксонам гипоталамо- гипофизарного пучка из ядер переднего гипоталамуса — супраоптического и паравентрикулярного…

3.

Реакционная способность веществ, анализ и синтез

Естествознание на молекулярном уровне

3. Реакционная способность веществ, анализ и синтез

Зависимость уровня тиреотропного и тиреоидных гормонов от заболеваний щитовидной железы

2.5 Влияние веществ на синтез тиреоидных гормонов

В настоящее время считается, что влияния на синтез различных веществ имеет смешанный характер.

Этот тезис доказывается в статье Р.В.

Кубасова, Е.Д…

Микроорганизмы в круговороте веществ в природе

Роль микроорганизмов в круговороте веществ в природе

С помощью микроорганизмов органические соединения растительного и животного происхождения минерализуются до углерода, азота, серы, фосфора, железа и др.

Круговорот углерода. В круговороте углерода активное участие принимают растения…

Микроорганизмы, выделенные из различных природных жиров

1.1 Структура жировых веществ

Жиры являются веществами нелетучими и при нагревании до 250-300°С разлагаются с образованием летучих веществ, выделяющихся в виде паров, газов и дыма.

Жиры плохие проводники тепла…

Глава 4. Печень, ее роль в обмене веществ

Обмен белков. Обмен жиров. Обмен углеводов. Печень, ее роль в обмене веществ

4.3 Роль печени в обмене веществ

Рассматривая обмен белков, жиров и углеводов мы не раз затрагивали печень.

Печень является важнейшим органом, осуществляющим синтез белков. В ней образуется весь альбумин крови, основная масса факторов свертывания…

Основные принципы питания

7. Роль минеральных веществ в питании человека

В зависимости от количества минеральных веществ в организме человека и в пищевых продуктах их подразделяют на макро- и микроэлементы.

К первым относятся кальций, калий, магний, натрий, фосфор, хлор, сера…

Роль микроорганизмов в круговороте химических элементов в природе

4. Роль микроорганизмов в круговороте серы в природе, их значение превращения веществ и практическое использование

Круговорот серы осуществляется в результате жизнедеятельности бактерий, окисляющих или восстанавливающих ее.

Процессы восстановления серы происходят несколькими путями. Под влиянием гнилостных бактерий — клостридий…

4.2 Каротиноиды. Их структура, функции и физиологическая роль

Каротиноиды — жирорастворимые пигменты желтого, оранжевого, красного цвета — присутствуют в хлоропластах всех растений. Они входят также в состав хромопластов в незеленых частях растений, например в корнеплодах моркови…

Фотосинтез как основа энергетики биосферы

4.3 Фикобилины.

Их структура, функции и физиологическая роль

Синезеленые водоросли (цианобактерии), красные морские водоросли и некоторые морские криптомонады помимо хлорофилла а и каротиноидов содержат пигменты фикобилины…

Энергетический метаболизм микроорганизмов

1.

Общие понятия об обмене веществ и энергии

Все живые организмы могут использовать только химически связанную энергию. Каждое вещество обладает определенным запасом потенциальной энергии. Главные материальные носители ее химические связи…

Основным источником энергии для клетки являются питательные вещества: углеводы, жиры и белки, которые окисляются с помощью кислорода. Практически все углеводы, прежде чем достичь клеток организма, благодаря работе желудочно-кишечного тракта и печени превращаются в глюкозу. Наряду с углеводами расщепляются также белки - до аминокислот и липиды - до жирных кислот.В клетке питательные вещества окисляются под действием кислорода и при участии ферментов, контролирующих реакции высвобождения энергии и ее утилизацию.

Почти все окислительные реакции происходят в митохондриях, а высвобождаемая энергия запасается в виде макроэргического соединения - АТФ. В дальнейшем для обеспечения внутриклеточных метаболических процессов энергией используется именно АТФ, а не питательные вещества.

Молекула АТФ содержит: (1) азотистое основание аденин; (2) пентозный углевод рибозу, (3) три остатка фосфорной кислоты. Два последних фосфата соединены друг с другом и с остальной частью молекулы макроэргическими фосфатными связями, обозначенными на формуле АТФ символом ~. При соблюдении характерных для организма физических и химических условий энергия каждой такой связи составляет 12000 калорий на 1 моль АТФ, что во много раз превышает энергию обычной химической связи, поэтому фосфатные связи и называют макроэргическими. Более того, эти связи легко разрушаются, обеспечивая внутриклеточные процессы энергией сразу, как только в этом возникает необходимость.

При высвобождении энергии АТФ отдает фосфатную группу и превращается в аденозиндифосфат. Выделившаяся энергия используется практически для всех клеточных процессов, например в реакциях биосинтеза и при мышечном сокращении.

Схема образования аденозинтрифосфата в клетке, показывающая ключевую роль митохондрий в этом процессе.
GI - глюкоза; FA - жирные кислоты; АА - аминокислота.

Восполнение запасов АТФ происходит путем воссоединения АДФ с остатком фосфорной кислоты за счет энергии питательных веществ. Этот процесс повторяется вновь и вновь. АТФ постоянно расходуется и накапливается, поэтому она получила название энергетической валюты клетки. Время оборота АТФ составляет всего несколько минут.

Роль митохондрий в химических реакциях образования АТФ . При попадании внутрь клетки глюкоза под действием ферментов цитоплазмы превращается в пировиноградную кислоту (этот процесс называют гликолизом). Энергия, высвобождаемая в этом процессе, затрачивается на превращение небольшого количества АДФ в АТФ, составляющего менее 5% общих запасов энергии.

На 95% осуществляется в митохондриях. Пировиноградная кислота, жирные кислоты и аминокислоты, образующиеся соответственно из углеводов, жиров и белков, в матриксе митохондрий в итоге превращаются в соединение под названием «ацетил-КоА». Это соединение, в свою очередь, вступает в серию ферментативных реакций под общим названием «цикл трикарбоновых кислот» или «цикл Кребса», чтобы отдать свою энергию.

В цикле трикарбоновых кислот ацетил-КоА расщепляется до атомов водорода и молекул углекислого газа. Углекислый газ удаляется из митохондрий, затем - из клетки путем диффузии и выводится из организма через легкие.

Атомы водорода химически очень активны и поэтому сразу вступают в реакцию с кислородом, диффундирующим в митохондрии. Большое количество энергии, выделяющейся в этой реакции, используется для превращения множества молекул АДФ в АТФ. Эти реакции достаточно сложны и требуют участия огромного числа ферментов, входящих в состав крист митохондрий. На начальном этапе от атома водорода отщепляется электрон, и атом превращается в ион водорода. Процесс заканчивается присоединением ионов водорода к кислороду. В результате этой реакции образуются вода и большое количество энергии, необходимой для работы АТФ-синтетазы - крупного глобулярного белка, выступающего в виде бугорков на поверхности крист митохондрий. Под действием этого фермента, использующего энергию ионов водорода, АДФ превращается в АТФ. Новые молекулы АТФ направляются из митохондрий ко всем отделам клетки, включая ядро, где энергия этого соединения используется для обеспечения самых разных функций.
Данный процесс синтеза АТФ в целом называют хемиосмотическим механизмом образования АТФ.



Использование аденозинтрифосфата митохондрий для реализации трех важных функций клетки:
мембранного транспорта, синтеза белка и мышечного сокращения.

В любой клетке нашего организма протекают миллионы биохимических реакций. Они катализируются множеством ферментов, которые зачастую требуют затрат энергии. Где же клетка ее берет? На этот вопрос можно ответить, если рассмотреть строение молекулы АТФ - одного из основных источников энергии.

АТФ - универсальный источник энергии

АТФ расшифровывается как аденозинтрифосфат, или аденозинтрифосфорная кислота. Вещество является одним из двух наиболее важных источников энергии в любой клетке. Строение АТФ и биологическая роль тесно связаны. Большинство биохимических реакций может протекать только при участии молекул вещества, особенно это касается Однако АТФ редко непосредственно участвует в реакции: для протекания любого процесса нужна энергия, заключенная именно в аденозинтрифосфата.

Строение молекул вещества таково, что образующиеся связи между фосфатными группами несут огромное количество энергии. Поэтому такие связи также называются макроэргическими, или макроэнергетическими (макро=много, большое количество). Термин впервые ввел ученый Ф. Липман, и он же предложил использовать значок ̴ для их обозначения.

Очень важно для клетки поддерживать постоянный уровень содержания аденозинтрифосфата. Особенно это характерно для клеток мышечной ткани и нервных волокон, потому что они наиболее энергозависимы и для выполнения своих функций нуждаются в высоком содержании аденозинтрифосфата.

Строение молекулы АТФ

Аденозинтрифосфат состоит из трех элементов: рибозы, аденина и остатков

Рибоза - углевод, который относится к группе пентоз. Это значит, что в составе рибозы 5 атомов углерода, которые заключены в цикл. Рибоза соединяется с аденином β-N-гликозидной связь на 1-ом атоме углерода. Также к пентозе присоединяются остатки фосфорной кислоты на 5-ом атоме углерода.

Аденин - азотистое основание. В зависимости от того, какое азотистое основание присоединяется к рибозе, выделяют также ГТФ (гуанозинтрифосфат), ТТФ (тимидинтрифосфат), ЦТФ (цитидинтрифосфат) и УТФ (уридинтрифосфат). Все эти вещества схожи по строению с аденозинтрифосфатом и выполняют примерно такие же функции, однако они встречаются в клетке намного реже.

Остатки фосфорной кислоты . К рибозе может присоединиться максимально три остатка фосфорной кислоты. Если их два или только один, то соответственно вещество называется АДФ (дифосфат) или АМФ (монофосфат). Именно между фосфорными остатками заключены макроэнергетические связи, после разрыва которых высвобождается от 40 до 60 кДж энергии. Если разрываются две связи, выделяется 80, реже - 120 кДж энергии. При разрыве связи между рибозой и фосфорным остатком выделяется всего лишь 13,8 кДж, поэтому в молекуле трифосфата только две макроэргические связи (Р ̴ Р ̴ Р), а в молекуле АДФ - одна (Р ̴ Р).

Вот каковы особенности строения АТФ. По причине того, что между остатками фосфорной кислоты образуется макроэнергетическая связь, строение и функции АТФ связаны между собой.

Строение АТФ и биологическая роль молекулы. Дополнительные функции аденозинтрифосфата

Кроме энергетической, АТФ может выполнять множество других функций в клетке. Наряду с другими нуклеотидтрифосфатами трифосфат участвует в построении нуклеиновый кислот. В этом случае АТФ, ГТФ, ТТФ, ЦТФ и УТФ являются поставщиками азотистых оснований. Это свойство используется в процессах и транскрипции.

Также АТФ необходим для работы ионных каналов. Например, Na-K канал выкачивает 3 молекулы натрия из клетки и вкачивает 2 молекулы калия в клетку. Такой ток ионов нужен для поддержания положительного заряда на наружной поверхности мембраны, и только с помощью аденозинтрифосфата канал может функционировать. То же касается протонных и кальциевых каналов.

АТФ является предшественником вторичного мессенжера цАМФ (циклический аденозинмонофосфат) - цАМФ не только передает сигнал, полученный рецепторами мембраны клетки, но и является аллостерическим эффектором. Аллостерические эффекторы - это вещества, которые ускоряют или замедляют ферментативные реакции. Так, циклический аденозинтрифосфат ингибирует синтез фермента, который катализирует расщепление лактозы в клетках бактерии.

Сама молекула аденозинтрифосфата также может быть аллостерическим эффектором. Причем в подобных процессах антагонистом АТФ выступает АДФ: если трифосфат ускоряет реакцию, то дифосфат затормаживает, и наоборот. Таковы функции и строение АТФ.

Как образуется АТФ в клетке

Функции и строение АТФ таковы, что молекулы вещества быстро используются и разрушаются. Поэтому синтез трифосфата - это важный процесс образования энергии в клетке.

Выделяют три наиболее важных способа синтеза аденозинтрифосфата:

1. Субстратное фосфорилирование.

2. Окислительное фосфорилирование.

3. Фотофосфорилирование.

Субстратное фосфорилирование основано на множественных реакциях, протекающих в цитоплазме клетки. Эти реакции получили название гликолиза - анаэробный этап В результате 1 цикла гликолиза из 1 молекулы глюкозы синтезируется две молекулы которые дальше используются для получения энергии, и также синтезируются два АТФ.

  • С 6 Н 12 О 6 + 2АДФ + 2Фн --> 2С 3 Н 4 O 3 + 2АТФ + 4Н.

Дыхание клетки

Окислительное фосфорилирование - это образование аденозинтрифосфата путем передачи электронов по электронно-транспортной цепи мембраны. В результате такой передачи формируется градиент протонов на одной из сторон мембраны и с помощью белкового интегрального комплекта АТФ-синтазы идет построение молекул. Процесс протекает на мембране митохондрий.

Последовательность стадий гликолиза и окислительного фосфорилирования в митохондриях составляет общий процесс под названием дыхание. После полного цикла из 1 молекулы глюкозы в клетке образуется 36 молекул АТФ.

Фотофосфорилирование

Процесс фотофосфорилирования - это то же окислительное фосфорилирование лишь с одним отличием: реакции фотофосфорилирования протекают в хлоропластах клетки под действием света. АТФ образуется во время световой стадии фотосинтеза - основного процесса получения энергии у зеленых растений, водорослей и некоторых бактерий.

В процессе фотосинтеза все по той же электронно-транспортной цепи проходят электроны, в результате чего формируется протонный градиент. Концентрация протонов на одной из сторон мембраны является источником синтеза АТФ. Сборка молекул осуществляется посредством фермента АТФ-синтазы.

В среднестатистической клетке содержится 0,04% аденозинтрифосфата от всей массы. Однако самое большое значение наблюдается в мышечных клетках: 0,2-0,5%.

В клетке около 1 млрд молекул АТФ.

Каждая молекула живет не больше 1 минуты.

Одна молекула аденозинтрифосфата обновляется в день 2000-3000 раз.

В сумме за сутки организм человека синтезирует 40 кг аденозинтрифосфата, и в каждый момент времени запас АТФ составляет 250 г.

Заключение

Строение АТФ и биологическая роль его молекул тесно связаны. Вещество играет ключевую роль в процессах жизнедеятельности, ведь в макроэргических связях между фосфатными остатками содержится огромное количество энергии. Аденозинтрифосфат выполняет множество функций в клетке, и поэтому важно поддерживать постоянную концентрацию вещества. Распад и синтез идут с большой скоростью, т. к. энергия связей постоянно используется в биохимических реакциях. Это незаменимое вещество любой клетки организма. Вот, пожалуй, и все, что можно сказать о том, какое строение имеет АТФ.

Аденозинтрифосфорная кислота-АТФ - обязательный энергетический компонент любой живой клетки. АТФ также нуклеотид, состоящий из азотистого основания аденина, сахара рибозы и трех остатков молекулы фосфорной кислоты. Это неустойчивая структура. В обменных процессах от нее последовательно отщепляются остатки фосфорной кислоты путем разрыва богатой энергией, но непрочной связи между вторым и третьим остатками фосфорной кислоты. Отрыв одной молекулы фосфорной кислоты сопровождается выделением около 40 кДж энергии. В этом случае АТФ переходит в аденозиндифосфорную кислоту (АДФ), а при дальнейшем отщеплении остатка фосфорной кислоты от АДФ образуется аденозинмонофосфорная кислота (АМФ).

Схема строения АТФ и превращения ее в АДФ (Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000)

Следовательно, АТФ - своеобразный аккумулятор энергии в клетке, который "разряжается" при ее расщеплении. Распад АТФ происходит в процессе реакций синтеза белков, жиров, углеводов и любых других жизненных функций клеток. Эти реакции идут с поглощением энергии, которая извлекается в ходе расщепления веществ.

АТФ синтезируется в митохондриях в несколько этапов. Первый из них - подготовительный - протекает ступенчато, с вовлечением на каждой ступени специфических ферментов. При этом сложные органические соединения расщепляются до мономеров: белки - до аминокислот, углеводы - до глюкозы, нуклеиновые кислоты - до нуклеотидов и т. д. Разрыв связей в этих веществах сопровождается выделением небольшого количества энергии. Образовавшиеся мономеры под действием других ферментов могут претерпеть дальнейший распад с образованием более простых веществ вплоть до диоксида углерода и воды.

Схема Синтез АТФ в мвтохондрии клетки

ПОЯСНЕНИЯ К СХЕМЕ ПРЕВРАЩЕНИЕ ВЕЩЕСТВ И ЭНЕРГИИ В ПРОЦЕССЕ ДИССИМИЛЯЦИИ

I этап - подготовительный: сложные органические вещества под действием пищеварительных ферментов распадаются на простые, при этом выделяется только тепловая энергия.
Белки ->аминокислоты
Жиры-> глицерин и жирные кислоты
Крахмал ->глюкоза

II этап-гликолиз (бескислородный): осуществляется в гиалоплазме, с мембранами не связан; в нем участвуют ферменты; расщеплению подвергается глюкоза:

У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):

У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т, д. Во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В ходе бескислородного расщепления глюкозы в виде химической связи в молекуле АТФ сохраняется 40% анергии, а остальная рассеивается в виде теплоты.

III этап-гидролиз (кислородный): осуществляется в митохондриях, связан с матриксом митохондрий и внутренней мембраной, в нем участвуют ферменты, расщеплению подвергается молочная кислота: СзН6Оз+ЗН20 -->3СО2+ 12Н. С02 (диоксид углерода) выделяется из митохондрий в окружающую среду. Атом водорода включается в цепь реакций, конечный результат которых - синтез АТФ. Эти реакции идут в такой последовательности:

1. Атом водорода Н с помощью ферментов-переносчиков поступает во внутреннюю мембрану митохондрий, образующую кристы, где он окисляется: Н-е-->H+

2. Протон водорода H+ (катион) выносится переносчиками на наружную поверхность мембраны крист. Для протонов эта мембрана непроницаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.

3. Электроны водорода e переносятся на внутреннюю поверхность мембраны крист и тут же присоединяются к кислороду с помощью фермента оксидазы, образуя отрицательно заряженный активный кислород (анион): O2 + е-->O2-

4. Катионы и анионы по обе стороны мембраны создают разноименно заряженное электрическое поле, и когда разность потенциалов достигнет 200 мВ, начинает действовать протонный канал. Он возникает в молекулах ферментов АТФ-синтетаз, которые встроены во внутреннюю мембрану, образующую кристы.

5. Через протонный канал протоны водородаH+ устремляются внутрь митохондрий, создавая высокий уровень энергии, большая часть которой идет на синтез АТФ из АДФ и Ф (АДФ+Ф-->АТФ), а протоны H+ взаимодействуют с активным кислородом, образуя воду и молекулярный 02:
(4Н++202- -->2Н20+02)

Таким образом, О2, поступающий в митохондрии в процессе дыхания организма, необходим для присоединения протонов водорода Н. При его отсутствии весь процесс в митохондриях прекращается, так как электронно-транспортная цепь перестает функционировать. Общая реакция III этапа:

(2СзНбОз + 6Oз + 36АДФ + 36Ф ---> 6С02 + 36АТФ + +42Н20)

В результате расщепления одной молекулы глюкозы образуются 38 молекул АТФ: на II этапе - 2 АТФ и на III этапе - 36 АТФ. Образовавшиеся молекулы АТФ выходят за пределы митохондрии и участвуют во всех процессах клетки, где необходима энергия. Расщепляясь, АТФ отдает энергию (одна фосфатная связь заключает 40 кДж) и в виде АДФ и Ф (фосфата) возвращается в митохондрии.



В продолжение темы:
Штукатурка

Что такое злаки, знает каждый. Ведь человек начал выращивать эти растения более 10 тысяч лет назад. Поэтому и сейчас такие названия злаков, как пшеница, рожь, ячмень, рис,...

Новые статьи
/
Популярные